import subprocess # ๐Ÿฅฒ subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) import spaces import gradio as gr import re import torch import os import json import time from pydantic import BaseModel from typing import Tuple from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from PIL import Image os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" # ----------------------- Model and Processor Loading ----------------------- # model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="auto", ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") # ----------------------- Pydantic Model Definition ----------------------- # class GeneralRetrievalQuery(BaseModel): broad_topical_query: str broad_topical_explanation: str specific_detail_query: str specific_detail_explanation: str visual_element_query: str visual_element_explanation: str def extract_json_with_regex(text): pattern = r'```(?:json)?\s*(.+?)\s*```' matches = re.findall(pattern, text, re.DOTALL) if matches: return matches[0] return None def get_retrieval_prompt(prompt_name: str) -> Tuple[str, GeneralRetrievalQuery]: if prompt_name != "general": raise ValueError("Only 'general' prompt is available in this version") prompt = """You are an AI assistant specialized in document retrieval tasks. Given an image of a document page, your task is to generate retrieval queries that someone might use to find this document in a large corpus. Please generate 3 different types of retrieval queries: 1. A broad topical query: This should cover the main subject of the document. 2. A specific detail query: This should focus on a particular fact, figure, or point made in the document. 3. A visual element query: This should reference a chart, graph, image, or other visual component in the document, if present. Don't just reference the name of the visual element but generate a query which this illustration may help answer or be related to. Important guidelines: - Ensure the queries are relevant for retrieval tasks, not just describing the page content. - Frame the queries as if someone is searching for this document, not asking questions about its content. - Make the queries diverse and representative of different search strategies. For each query, also provide a brief explanation of why this query would be effective in retrieving this document. Format your response as a JSON object with the following structure: { "broad_topical_query": "Your query here", "broad_topical_explanation": "Brief explanation", "specific_detail_query": "Your query here", "specific_detail_explanation": "Brief explanation", "visual_element_query": "Your query here", "visual_element_explanation": "Brief explanation" } If there are no relevant visual elements, replace the third query with another specific detail query. Here is the document image to analyze: Generate the queries based on this image and provide the response in the specified JSON format.""" return prompt, GeneralRetrievalQuery prompt, pydantic_model = get_retrieval_prompt("general") # ----------------------- Input Preprocessing ----------------------- # def _prep_data_for_input(image): messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": prompt}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) return processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) # ----------------------- Output Formatting ----------------------- # def format_output(data: dict, output_format: str) -> str: """ Convert the JSON data into the desired output format. output_format: "JSON", "Markdown", "Table" """ if output_format == "JSON": # Wrap with code block for better display in Markdown view return f"```json\n{json.dumps(data, indent=2, ensure_ascii=False)}\n```" elif output_format == "Markdown": md_lines = [] for key, value in data.items(): md_lines.append(f"**{key.replace('_', ' ').title()}:** {value}") return "\n\n".join(md_lines) elif output_format == "Table": headers = ["Field", "Content"] separator = " | ".join(["---"] * len(headers)) rows = [f"| {' | '.join(headers)} |", f"| {separator} |"] for key, value in data.items(): rows.append(f"| {key.replace('_', ' ').title()} | {value} |") return "\n".join(rows) else: return f"```json\n{json.dumps(data, indent=2, ensure_ascii=False)}\n```" # ----------------------- Response Generation ----------------------- # @spaces.GPU def generate_response(image, output_format: str = "JSON"): inputs = _prep_data_for_input(image) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=200) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, )[0] try: json_str = extract_json_with_regex(output_text) if json_str: parsed = json.loads(json_str) return format_output(parsed, output_format) parsed = json.loads(output_text) return format_output(parsed, output_format) except Exception: gr.Warning("Failed to parse JSON from output") return output_text # ----------------------- Interface Title and Description (in English) ----------------------- # title = "Elegant ColPali Query Generator using Qwen2.5-VL" description = """**ColPali** is a multimodal approach optimized for document retrieval. This interface uses the [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) model to generate relevant retrieval queries based on a document image. The queries include: - **Broad Topical Query:** Covers the main subject of the document. - **Specific Detail Query:** Focuses on a particular fact, figure, or point from the document. - **Visual Element Query:** References a visual component (e.g., chart, graph) from the document. Refer to the examples below to generate queries suitable for your document image. For more information, please see the associated blog post. """ examples = [ "examples/Approche_no_13_1977.pdf_page_22.jpg", "examples/SRCCL_Technical-Summary.pdf_page_7.jpg", ] # ----------------------- Custom CSS ----------------------- # custom_css = """ body { background: #f7f9fb; font-family: 'Segoe UI', sans-serif; color: #333; } header { text-align: center; padding: 20px; margin-bottom: 20px; } header h1 { font-size: 3em; color: #2c3e50; } .gradio-container { padding: 20px; } .gr-button { background-color: #3498db !important; color: #fff !important; border: none !important; padding: 10px 20px !important; border-radius: 5px !important; font-size: 1em !important; } .gr-button:hover { background-color: #2980b9 !important; } .gr-gallery-item { border-radius: 10px; overflow: hidden; box-shadow: 0 2px 10px rgba(0,0,0,0.1); } footer { text-align: center; padding: 20px 0; font-size: 0.9em; color: #555; } """ # ----------------------- Gradio Interface ----------------------- # with gr.Blocks(css=custom_css, title=title) as demo: with gr.Column(variant="panel"): gr.Markdown(f"

{title}

") gr.Markdown(description) with gr.Tabs(): with gr.TabItem("Query Generation"): gr.Markdown("### Generate Retrieval Queries from a Document Image") with gr.Row(): image_input = gr.Image(label="Upload Document Image", type="pil") with gr.Row(): output_format = gr.Radio( choices=["JSON", "Markdown", "Table"], value="JSON", label="Output Format", info="Select the desired output format." ) generate_button = gr.Button("Generate Query") # ์ถœ๋ ฅ ์ปดํฌ๋„ŒํŠธ๋ฅผ gr.Markdown์œผ๋กœ ๋ณ€๊ฒฝํ•˜์—ฌ Markdown ๋ฐ Table ํ˜•์‹์ด ์ œ๋Œ€๋กœ ๋ Œ๋”๋ง๋˜๋„๋ก ํ•จ. output_text = gr.Markdown(label="Generated Query") with gr.Accordion("Examples", open=False): gr.Examples( label="Query Examples", examples=[ "examples/Approche_no_13_1977.pdf_page_22.jpg", "examples/SRCCL_Technical-Summary.pdf_page_7.jpg", ], inputs=image_input, ) generate_button.click( fn=generate_response, inputs=[image_input, output_format], outputs=output_text ) gr.Markdown("") demo.launch()