Guill-Bla commited on
Commit
be5011a
·
verified ·
1 Parent(s): 3f1f9b9

Update tasks/image.py

Browse files
Files changed (1) hide show
  1. tasks/image.py +43 -44
tasks/image.py CHANGED
@@ -2,10 +2,11 @@ from fastapi import APIRouter
2
  from datetime import datetime
3
  from datasets import load_dataset
4
  import numpy as np
5
- from sklearn.metrics import accuracy_score, precision_score, recall_score
6
  import random
7
  import os
8
 
 
9
  from .utils.evaluation import ImageEvaluationRequest
10
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
11
 
@@ -14,9 +15,11 @@ load_dotenv()
14
 
15
  router = APIRouter()
16
 
17
- DESCRIPTION = "Random Baseline"
18
  ROUTE = "/image"
19
 
 
 
20
  def parse_boxes(annotation_string):
21
  """Parse multiple boxes from a single annotation string.
22
  Each box has 5 values: class_id, x_center, y_center, width, height"""
@@ -89,7 +92,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
89
 
90
  # Split dataset
91
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
92
- test_dataset = train_test["test"]
93
 
94
  # Start tracking emissions
95
  tracker.start()
@@ -99,50 +102,51 @@ async def evaluate_image(request: ImageEvaluationRequest):
99
  # YOUR MODEL INFERENCE CODE HERE
100
  # Update the code below to replace the random baseline with your model inference
101
  #--------------------------------------------------------------------------------------------
102
- from ultralytics import YOLO
103
-
104
- # Load the trained YOLOv8 model
105
- model = YOLO("./../best.pt")
106
-
107
  predictions = []
108
  true_labels = []
109
- pred_boxes = []
110
- true_boxes_list = [] # List of lists, each inner list contains boxes for one image
111
-
112
-
113
- # Inference loop
114
  for example in test_dataset:
115
- # Parse true annotation (YOLO format: class_id x_center y_center width height)
 
116
  annotation = example.get("annotations", "").strip()
117
- has_smoke = len(annotation) > 0
118
- true_labels.append(int(has_smoke))
119
-
120
- # Load the image
121
- image_path = example.get("image_path") # Assuming access to image file path
122
 
123
- # Perform YOLOv8 inference
124
- results = yolov8_model.predict(image_path)
125
-
126
- # Classification: Check if the model predicted any boxes (smoke presence)
127
- pred_has_smoke = len(results[0].boxes) > 0
128
- predictions.append(int(pred_has_smoke))
129
 
130
- # Parse YOLO format true boxes
131
  if has_smoke:
132
- # Parse all true boxes from the annotation
133
  image_true_boxes = parse_boxes(annotation)
134
- true_boxes_list.append(image_true_boxes)
135
-
136
- # Get predicted bounding boxes (YOLO format)
137
- image_pred_boxes = []
138
- for box in results[0].boxes:
139
- x_center, y_center, width, height = box.xywh[0].tolist()
140
- image_pred_boxes.append([x_center, y_center, width, height])
141
-
142
- pred_boxes.append(image_pred_boxes)
143
  else:
144
- true_boxes_list.append([]) # No true boxes for this image
145
- pred_boxes.append([]) # No predicted boxes for this image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
  #--------------------------------------------------------------------------------------------
148
  # YOUR MODEL INFERENCE STOPS HERE
@@ -151,10 +155,8 @@ async def evaluate_image(request: ImageEvaluationRequest):
151
  # Stop tracking emissions
152
  emissions_data = tracker.stop_task()
153
 
154
- # Calculate classification metrics
155
  classification_accuracy = accuracy_score(true_labels, predictions)
156
- classification_precision = precision_score(true_labels, predictions)
157
- classification_recall = recall_score(true_labels, predictions)
158
 
159
  # Calculate mean IoU for object detection (only for images with smoke)
160
  # For each image, we compute the max IoU between the predicted box and all true boxes
@@ -172,8 +174,6 @@ async def evaluate_image(request: ImageEvaluationRequest):
172
  "submission_timestamp": datetime.now().isoformat(),
173
  "model_description": DESCRIPTION,
174
  "classification_accuracy": float(classification_accuracy),
175
- "classification_precision": float(classification_precision),
176
- "classification_recall": float(classification_recall),
177
  "mean_iou": mean_iou,
178
  "energy_consumed_wh": emissions_data.energy_consumed * 1000,
179
  "emissions_gco2eq": emissions_data.emissions * 1000,
@@ -185,5 +185,4 @@ async def evaluate_image(request: ImageEvaluationRequest):
185
  "test_seed": request.test_seed
186
  }
187
  }
188
-
189
  return results
 
2
  from datetime import datetime
3
  from datasets import load_dataset
4
  import numpy as np
5
+ from sklearn.metrics import accuracy_score
6
  import random
7
  import os
8
 
9
+ from ultralytics import YOLO # Import YOLO
10
  from .utils.evaluation import ImageEvaluationRequest
11
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
12
 
 
15
 
16
  router = APIRouter()
17
 
18
+ DESCRIPTION = "YOLO Smoke Detection"
19
  ROUTE = "/image"
20
 
21
+ yolo_model = YOLO("best.pt")
22
+
23
  def parse_boxes(annotation_string):
24
  """Parse multiple boxes from a single annotation string.
25
  Each box has 5 values: class_id, x_center, y_center, width, height"""
 
92
 
93
  # Split dataset
94
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
95
+ test_dataset = dataset["val"]#train_test["test"]
96
 
97
  # Start tracking emissions
98
  tracker.start()
 
102
  # YOUR MODEL INFERENCE CODE HERE
103
  # Update the code below to replace the random baseline with your model inference
104
  #--------------------------------------------------------------------------------------------
 
 
 
 
 
105
  predictions = []
106
  true_labels = []
107
+ pred_boxes = []
108
+ true_boxes_list = []
109
+
 
 
110
  for example in test_dataset:
111
+ # Extract image and annotations
112
+ image = example["image"]
113
  annotation = example.get("annotations", "").strip()
114
+
 
 
 
 
115
 
116
+ has_smoke = len(annotation) > 0
117
+ true_labels.append(1 if has_smoke else 0)
 
 
 
 
118
 
119
+
120
  if has_smoke:
 
121
  image_true_boxes = parse_boxes(annotation)
122
+ if image_true_boxes:
123
+ true_boxes_list.append(image_true_boxes)
124
+ else:
125
+ true_boxes_list.append([])
 
 
 
 
 
126
  else:
127
+ true_boxes_list.append([])
128
+
129
+ results = yolo_model .predict(image, verbose=False) # INFERENCE - prediction
130
+
131
+ if len(results[0].boxes):
132
+ pred_box = results[0].boxes.xywhn[0].cpu().numpy().tolist()
133
+ predictions.append(1)
134
+ pred_boxes.append(pred_box)
135
+ else:
136
+ predictions.append(0)
137
+ pred_boxes.append([])
138
+
139
+ filtered_true_boxes_list = []
140
+ filtered_pred_boxes = []
141
+
142
+ for true_boxes, pred_boxes_entry in zip(true_boxes_list, pred_boxes): # Only see when annotation(s) is/are both on true label and prediction
143
+ if true_boxes and pred_boxes_entry:
144
+ filtered_true_boxes_list.append(true_boxes)
145
+ filtered_pred_boxes.append(pred_boxes_entry)
146
+
147
+
148
+ true_boxes_list = filtered_true_boxes_list
149
+ pred_boxes = filtered_pred_boxes
150
 
151
  #--------------------------------------------------------------------------------------------
152
  # YOUR MODEL INFERENCE STOPS HERE
 
155
  # Stop tracking emissions
156
  emissions_data = tracker.stop_task()
157
 
158
+ # Calculate classification accuracy
159
  classification_accuracy = accuracy_score(true_labels, predictions)
 
 
160
 
161
  # Calculate mean IoU for object detection (only for images with smoke)
162
  # For each image, we compute the max IoU between the predicted box and all true boxes
 
174
  "submission_timestamp": datetime.now().isoformat(),
175
  "model_description": DESCRIPTION,
176
  "classification_accuracy": float(classification_accuracy),
 
 
177
  "mean_iou": mean_iou,
178
  "energy_consumed_wh": emissions_data.energy_consumed * 1000,
179
  "emissions_gco2eq": emissions_data.emissions * 1000,
 
185
  "test_seed": request.test_seed
186
  }
187
  }
 
188
  return results