Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ model = tf.keras.models.load_model(model_path)
|
|
12 |
# Define the core prediction function
|
13 |
def predict_skin(image):
|
14 |
# Preprocess image
|
15 |
-
image = image.resize((450, 450)) # Resize the image to
|
16 |
image = image.convert('RGB') # Ensure image has 3 channels
|
17 |
image = np.array(image)
|
18 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
@@ -30,8 +30,11 @@ def predict_skin(image):
|
|
30 |
return probabilities_dict
|
31 |
|
32 |
# Streamlit interface
|
33 |
-
st.title("Skin disease
|
34 |
-
st.write("
|
|
|
|
|
|
|
35 |
|
36 |
# Upload image
|
37 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
@@ -45,7 +48,7 @@ if uploaded_image is not None:
|
|
45 |
predictions = predict_skin(image)
|
46 |
|
47 |
# Display predictions as a DataFrame
|
48 |
-
st.write("###
|
49 |
df = pd.DataFrame(predictions.items(), columns=["Condition", "Probability"])
|
50 |
st.dataframe(df)
|
51 |
|
|
|
12 |
# Define the core prediction function
|
13 |
def predict_skin(image):
|
14 |
# Preprocess image
|
15 |
+
image = image.resize((450, 450)) # Resize the image to 450x450
|
16 |
image = image.convert('RGB') # Ensure image has 3 channels
|
17 |
image = np.array(image)
|
18 |
image = np.expand_dims(image, axis=0) # Add batch dimension
|
|
|
30 |
return probabilities_dict
|
31 |
|
32 |
# Streamlit interface
|
33 |
+
st.title("Skin disease detection")
|
34 |
+
st.write(" The Skin Disease Detector is a prototype and should not be used as the sole method for diagnosing skin diseases. For accurate diagnosis and treatment, please consult a trained medical professional. This tool is intended for preliminary screening purposes only and should not replace professional medical advice.")
|
35 |
+
st.write("")
|
36 |
+
st.write("Accurate classification works best if you provide a clear and close-up image with natural lighting.")
|
37 |
+
st.write("")
|
38 |
|
39 |
# Upload image
|
40 |
uploaded_image = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
|
|
48 |
predictions = predict_skin(image)
|
49 |
|
50 |
# Display predictions as a DataFrame
|
51 |
+
st.write("### Probabilities")
|
52 |
df = pd.DataFrame(predictions.items(), columns=["Condition", "Probability"])
|
53 |
st.dataframe(df)
|
54 |
|