File size: 5,742 Bytes
c5d2283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import AutoModel, AutoConfig
from transformers import AutoTokenizer
import pandas as pd

AUTH_TOKEN = "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"

tokenizer = AutoTokenizer.from_pretrained('nguyenvulebinh/vi-mrc-base',
                                          use_auth_token=AUTH_TOKEN)
pad_token_id = tokenizer.pad_token_id


class PairwiseModel(nn.Module):
    def __init__(self, model_name, max_length=384, batch_size=16, device="cuda:0"):
        super(PairwiseModel, self).__init__()
        self.max_length = max_length
        self.batch_size = batch_size
        self.device = device
        self.model = AutoModel.from_pretrained(model_name, use_auth_token=AUTH_TOKEN)
        self.model.to(self.device)
        self.model.eval()
        self.config = AutoConfig.from_pretrained(model_name, use_auth_token=AUTH_TOKEN)
        self.fc = nn.Linear(768, 1).to(self.device)

    def forward(self, ids, masks):
        out = self.model(input_ids=ids,
                         attention_mask=masks,
                         output_hidden_states=False).last_hidden_state
        out = out[:, 0]
        outputs = self.fc(out)
        return outputs

    def stage1_ranking(self, question, texts):
        tmp = pd.DataFrame()
        tmp["text"] = [" ".join(x.split()) for x in texts]
        tmp["question"] = question
        valid_dataset = SiameseDatasetStage1(tmp, tokenizer, self.max_length, is_test=True)
        valid_loader = DataLoader(valid_dataset, batch_size=self.batch_size, collate_fn=collate_fn,
                                  num_workers=0, shuffle=False, pin_memory=True)
        preds = []
        with torch.no_grad():
            bar = enumerate(valid_loader)
            for step, data in bar:
                ids = data["ids"].to(self.device)
                masks = data["masks"].to(self.device)
                preds.append(torch.sigmoid(self(ids, masks)).view(-1))
            preds = torch.concat(preds)
        return preds.cpu().numpy()

    def stage2_ranking(self, question, answer, titles, texts):
        tmp = pd.DataFrame()
        tmp["candidate"] = texts
        tmp["question"] = question
        tmp["answer"] = answer
        tmp["title"] = titles
        valid_dataset = SiameseDatasetStage2(tmp, tokenizer, self.max_length, is_test=True)
        valid_loader = DataLoader(valid_dataset, batch_size=self.batch_size, collate_fn=collate_fn,
                                  num_workers=0, shuffle=False, pin_memory=True)
        preds = []
        with torch.no_grad():
            bar = enumerate(valid_loader)
            for step, data in bar:
                ids = data["ids"].to(self.device)
                masks = data["masks"].to(self.device)
                preds.append(torch.sigmoid(self(ids, masks)).view(-1))
            preds = torch.concat(preds)
        return preds.cpu().numpy()


class SiameseDatasetStage1(Dataset):

    def __init__(self, df, tokenizer, max_length, is_test=False):
        self.df = df
        self.max_length = max_length
        self.tokenizer = tokenizer
        self.is_test = is_test
        self.content1 = tokenizer.batch_encode_plus(list(df.question.values), max_length=max_length, truncation=True)[
            "input_ids"]
        self.content2 = tokenizer.batch_encode_plus(list(df.text.values), max_length=max_length, truncation=True)[
            "input_ids"]
        if not self.is_test:
            self.targets = self.df.label

    def __len__(self):
        return len(self.df)

    def __getitem__(self, index):
        return {
            'ids1': torch.tensor(self.content1[index], dtype=torch.long),
            'ids2': torch.tensor(self.content2[index][1:], dtype=torch.long),
            'target': torch.tensor(0) if self.is_test else torch.tensor(self.targets[index], dtype=torch.float)
        }


class SiameseDatasetStage2(Dataset):

    def __init__(self, df, tokenizer, max_length, is_test=False):
        self.df = df
        self.max_length = max_length
        self.tokenizer = tokenizer
        self.is_test = is_test
        self.df["content1"] = self.df.apply(lambda row: row.question + f" {tokenizer.sep_token} " + row.answer, axis=1)
        self.df["content2"] = self.df.apply(lambda row: row.title + f" {tokenizer.sep_token} " + row.candidate, axis=1)
        self.content1 = tokenizer.batch_encode_plus(list(df.content1.values), max_length=max_length, truncation=True)[
            "input_ids"]
        self.content2 = tokenizer.batch_encode_plus(list(df.content2.values), max_length=max_length, truncation=True)[
            "input_ids"]
        if not self.is_test:
            self.targets = self.df.label

    def __len__(self):
        return len(self.df)

    def __getitem__(self, index):
        return {
            'ids1': torch.tensor(self.content1[index], dtype=torch.long),
            'ids2': torch.tensor(self.content2[index][1:], dtype=torch.long),
            'target': torch.tensor(0) if self.is_test else torch.tensor(self.targets[index], dtype=torch.float)
        }


def collate_fn(batch):
    ids = [torch.cat([x["ids1"], x["ids2"]]) for x in batch]
    targets = [x["target"] for x in batch]
    max_len = np.max([len(x) for x in ids])
    masks = []
    for i in range(len(ids)):
        if len(ids[i]) < max_len:
            ids[i] = torch.cat((ids[i], torch.tensor([pad_token_id, ] * (max_len - len(ids[i])), dtype=torch.long)))
        masks.append(ids[i] != pad_token_id)
    # print(tokenizer.decode(ids[0]))
    outputs = {
        "ids": torch.vstack(ids),
        "masks": torch.vstack(masks),
        "target": torch.vstack(targets).view(-1)
    }
    return outputs