Spaces:
Runtime error
Runtime error
Filip
commited on
Commit
·
ed56d3f
1
Parent(s):
fe01251
update
Browse files- app.py +64 -33
- requirements.txt +4 -3
app.py
CHANGED
@@ -3,70 +3,100 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, Tex
|
|
3 |
import torch
|
4 |
import gc
|
5 |
import os
|
|
|
|
|
|
|
6 |
|
7 |
# Enable better CPU performance
|
8 |
torch.set_num_threads(4)
|
9 |
device = "cpu"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def load_model():
|
12 |
model_name = "forestav/unsloth_vision_radiography_finetune"
|
13 |
-
base_model_name = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
14 |
|
15 |
print("Loading tokenizer and processor...")
|
16 |
-
# Load tokenizer from base model
|
17 |
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
base_model_name,
|
19 |
-
trust_remote_code=True
|
|
|
20 |
)
|
21 |
|
22 |
-
# Load processor from base model
|
23 |
processor = AutoProcessor.from_pretrained(
|
24 |
base_model_name,
|
25 |
-
trust_remote_code=True
|
|
|
26 |
)
|
27 |
|
28 |
-
print("Loading model...")
|
29 |
-
|
30 |
-
model = AutoModelForCausalLM.from_pretrained(
|
31 |
-
model_name,
|
32 |
-
device_map="cpu",
|
33 |
-
torch_dtype=torch.float32,
|
34 |
-
low_cpu_mem_usage=True,
|
35 |
-
offload_folder="offload",
|
36 |
-
offload_state_dict=True,
|
37 |
-
trust_remote_code=True
|
38 |
-
)
|
39 |
|
40 |
-
print("
|
|
|
|
|
41 |
model = torch.quantization.quantize_dynamic(
|
42 |
model,
|
43 |
-
{torch.nn.Linear},
|
44 |
dtype=torch.qint8
|
45 |
)
|
46 |
|
47 |
return model, tokenizer, processor
|
48 |
|
49 |
-
# Create
|
|
|
50 |
os.makedirs("offload", exist_ok=True)
|
51 |
|
|
|
|
|
52 |
# Initialize model and tokenizer globally
|
53 |
print("Starting model initialization...")
|
54 |
try:
|
55 |
model, tokenizer, processor = load_model()
|
56 |
-
print("Model loaded
|
|
|
57 |
except Exception as e:
|
58 |
print(f"Error loading model: {str(e)}")
|
59 |
raise
|
60 |
|
61 |
def analyze_image(image, instruction):
|
62 |
try:
|
63 |
-
# Clear memory
|
64 |
gc.collect()
|
65 |
|
66 |
if instruction.strip() == "":
|
67 |
instruction = "You are an expert radiographer. Describe accurately what you see in this image."
|
68 |
|
69 |
-
# Prepare the messages
|
70 |
messages = [
|
71 |
{"role": "user", "content": [
|
72 |
{"type": "image"},
|
@@ -74,14 +104,17 @@ def analyze_image(image, instruction):
|
|
74 |
]}
|
75 |
]
|
76 |
|
77 |
-
# Process
|
|
|
|
|
|
|
78 |
inputs = processor(
|
79 |
images=image,
|
80 |
text=tokenizer.apply_chat_template(messages, add_generation_prompt=True),
|
81 |
return_tensors="pt"
|
82 |
)
|
83 |
|
84 |
-
# Generate with
|
85 |
with torch.no_grad():
|
86 |
outputs = model.generate(
|
87 |
**inputs,
|
@@ -90,14 +123,13 @@ def analyze_image(image, instruction):
|
|
90 |
min_p=0.1,
|
91 |
use_cache=True,
|
92 |
pad_token_id=tokenizer.eos_token_id,
|
93 |
-
num_beams=1
|
|
|
94 |
)
|
95 |
|
96 |
-
# Decode the response
|
97 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
98 |
|
99 |
-
|
100 |
-
del outputs
|
101 |
gc.collect()
|
102 |
|
103 |
return response
|
@@ -116,7 +148,7 @@ with gr.Blocks() as demo:
|
|
116 |
image_input = gr.Image(
|
117 |
type="pil",
|
118 |
label="Upload Medical Image",
|
119 |
-
max_pixels=
|
120 |
)
|
121 |
instruction_input = gr.Textbox(
|
122 |
label="Custom Instruction (optional)",
|
@@ -128,7 +160,6 @@ with gr.Blocks() as demo:
|
|
128 |
with gr.Column():
|
129 |
output_text = gr.Textbox(label="Analysis Result", lines=10)
|
130 |
|
131 |
-
# Handle the submission
|
132 |
submit_btn.click(
|
133 |
fn=analyze_image,
|
134 |
inputs=[image_input, instruction_input],
|
@@ -137,11 +168,11 @@ with gr.Blocks() as demo:
|
|
137 |
|
138 |
gr.Markdown("""
|
139 |
### Notes:
|
140 |
-
- The model runs on CPU and may take several
|
141 |
-
- For best results, upload images smaller than
|
|
|
142 |
- Please be patient during processing
|
143 |
""")
|
144 |
|
145 |
-
# Launch the app
|
146 |
if __name__ == "__main__":
|
147 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
import gc
|
5 |
import os
|
6 |
+
from accelerate import init_empty_weights
|
7 |
+
from accelerate.utils import load_checkpoint_in_model
|
8 |
+
import psutil
|
9 |
|
10 |
# Enable better CPU performance
|
11 |
torch.set_num_threads(4)
|
12 |
device = "cpu"
|
13 |
|
14 |
+
def get_free_memory():
|
15 |
+
"""Get available memory in GB"""
|
16 |
+
return psutil.virtual_memory().available / (1024 * 1024 * 1024)
|
17 |
+
|
18 |
+
def load_model_in_chunks(model_path, chunk_size_gb=2):
|
19 |
+
"""Load model in chunks to manage memory"""
|
20 |
+
config = AutoModelForCausalLM.from_pretrained(model_path, return_dict=False).config
|
21 |
+
|
22 |
+
with init_empty_weights():
|
23 |
+
empty_model = AutoModelForCausalLM.from_config(config)
|
24 |
+
|
25 |
+
# Get checkpoint files
|
26 |
+
index_path = os.path.join(model_path, "model.safetensors.index.json")
|
27 |
+
if os.path.exists(index_path):
|
28 |
+
checkpoint_files = [
|
29 |
+
os.path.join(model_path, f"model-{i:05d}-of-{5:05d}.safetensors")
|
30 |
+
for i in range(1, 6)
|
31 |
+
]
|
32 |
+
else:
|
33 |
+
checkpoint_files = [os.path.join(model_path, "pytorch_model.bin")]
|
34 |
+
|
35 |
+
# Load each chunk
|
36 |
+
for checkpoint in checkpoint_files:
|
37 |
+
if get_free_memory() < 2: # If less than 2GB free
|
38 |
+
gc.collect()
|
39 |
+
torch.cuda.empty_cache()
|
40 |
+
|
41 |
+
load_checkpoint_in_model(empty_model, checkpoint)
|
42 |
+
gc.collect()
|
43 |
+
|
44 |
+
return empty_model
|
45 |
+
|
46 |
def load_model():
|
47 |
model_name = "forestav/unsloth_vision_radiography_finetune"
|
48 |
+
base_model_name = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
49 |
|
50 |
print("Loading tokenizer and processor...")
|
|
|
51 |
tokenizer = AutoTokenizer.from_pretrained(
|
52 |
base_model_name,
|
53 |
+
trust_remote_code=True,
|
54 |
+
cache_dir="model_cache"
|
55 |
)
|
56 |
|
|
|
57 |
processor = AutoProcessor.from_pretrained(
|
58 |
base_model_name,
|
59 |
+
trust_remote_code=True,
|
60 |
+
cache_dir="model_cache"
|
61 |
)
|
62 |
|
63 |
+
print("Loading model in chunks...")
|
64 |
+
model = load_model_in_chunks(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
print("Optimizing model for CPU...")
|
67 |
+
# Convert to float32 and quantize
|
68 |
+
model = model.to(torch.float32)
|
69 |
model = torch.quantization.quantize_dynamic(
|
70 |
model,
|
71 |
+
{torch.nn.Linear, torch.nn.Conv2d},
|
72 |
dtype=torch.qint8
|
73 |
)
|
74 |
|
75 |
return model, tokenizer, processor
|
76 |
|
77 |
+
# Create cache directories
|
78 |
+
os.makedirs("model_cache", exist_ok=True)
|
79 |
os.makedirs("offload", exist_ok=True)
|
80 |
|
81 |
+
print(f"Available memory before loading: {get_free_memory():.2f} GB")
|
82 |
+
|
83 |
# Initialize model and tokenizer globally
|
84 |
print("Starting model initialization...")
|
85 |
try:
|
86 |
model, tokenizer, processor = load_model()
|
87 |
+
print("Model loaded successfully!")
|
88 |
+
print(f"Available memory after loading: {get_free_memory():.2f} GB")
|
89 |
except Exception as e:
|
90 |
print(f"Error loading model: {str(e)}")
|
91 |
raise
|
92 |
|
93 |
def analyze_image(image, instruction):
|
94 |
try:
|
|
|
95 |
gc.collect()
|
96 |
|
97 |
if instruction.strip() == "":
|
98 |
instruction = "You are an expert radiographer. Describe accurately what you see in this image."
|
99 |
|
|
|
100 |
messages = [
|
101 |
{"role": "user", "content": [
|
102 |
{"type": "image"},
|
|
|
104 |
]}
|
105 |
]
|
106 |
|
107 |
+
# Process with memory checks
|
108 |
+
if get_free_memory() < 2:
|
109 |
+
gc.collect()
|
110 |
+
|
111 |
inputs = processor(
|
112 |
images=image,
|
113 |
text=tokenizer.apply_chat_template(messages, add_generation_prompt=True),
|
114 |
return_tensors="pt"
|
115 |
)
|
116 |
|
117 |
+
# Generate with minimal memory usage
|
118 |
with torch.no_grad():
|
119 |
outputs = model.generate(
|
120 |
**inputs,
|
|
|
123 |
min_p=0.1,
|
124 |
use_cache=True,
|
125 |
pad_token_id=tokenizer.eos_token_id,
|
126 |
+
num_beams=1,
|
127 |
+
do_sample=False # Disable sampling to save memory
|
128 |
)
|
129 |
|
|
|
130 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
131 |
|
132 |
+
del outputs, inputs
|
|
|
133 |
gc.collect()
|
134 |
|
135 |
return response
|
|
|
148 |
image_input = gr.Image(
|
149 |
type="pil",
|
150 |
label="Upload Medical Image",
|
151 |
+
max_pixels=1000000 # Reduced max image size
|
152 |
)
|
153 |
instruction_input = gr.Textbox(
|
154 |
label="Custom Instruction (optional)",
|
|
|
160 |
with gr.Column():
|
161 |
output_text = gr.Textbox(label="Analysis Result", lines=10)
|
162 |
|
|
|
163 |
submit_btn.click(
|
164 |
fn=analyze_image,
|
165 |
inputs=[image_input, instruction_input],
|
|
|
168 |
|
169 |
gr.Markdown("""
|
170 |
### Notes:
|
171 |
+
- The model runs on CPU and may take several minutes to process each image
|
172 |
+
- For best results, upload images smaller than 1MP
|
173 |
+
- Initial loading may take some time
|
174 |
- Please be patient during processing
|
175 |
""")
|
176 |
|
|
|
177 |
if __name__ == "__main__":
|
178 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
gradio
|
2 |
torch
|
3 |
-
transformers
|
4 |
-
|
5 |
-
|
|
|
|
1 |
gradio
|
2 |
torch
|
3 |
+
transformers>=4.36.0
|
4 |
+
accelerate
|
5 |
+
psutil
|
6 |
+
safetensors
|