Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,18 +6,13 @@
|
|
6 |
# copies of the Software, and to permit persons to whom the Software is
|
7 |
import spaces
|
8 |
import os
|
9 |
-
|
10 |
import random
|
11 |
import uuid
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
import torch
|
16 |
-
import
|
17 |
-
|
18 |
-
import hidet
|
19 |
-
import diffusers
|
20 |
-
|
21 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
22 |
from diffusers import EulerAncestralDiscreteScheduler
|
23 |
from typing import Tuple
|
@@ -31,8 +26,8 @@ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
|
31 |
torch.backends.cudnn.allow_tf32 = False
|
32 |
torch.backends.cudnn.deterministic = False
|
33 |
torch.backends.cudnn.benchmark = False
|
34 |
-
|
35 |
-
|
36 |
torch.set_float32_matmul_precision("highest")
|
37 |
|
38 |
FTP_HOST = "1ink.us"
|
@@ -112,30 +107,10 @@ def load_and_prepare_model():
|
|
112 |
pipe.safety_checker=None
|
113 |
#pipe.unet.to(memory_format=torch.channels_last)
|
114 |
#pipe.enable_vae_tiling()
|
115 |
-
#pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
|
116 |
-
#pipe.unet = torch.compile(pipe.unet, backend="hidet")
|
117 |
pipe.to(device=device, dtype=torch.bfloat16)
|
118 |
|
119 |
return pipe
|
120 |
|
121 |
-
# for compile
|
122 |
-
hidet.option.parallel_build(True)
|
123 |
-
#hidet.option.parallel_tune(-1,4.0)
|
124 |
-
torch._dynamo.config.suppress_errors = True
|
125 |
-
torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
|
126 |
-
# more search
|
127 |
-
hidet.torch.dynamo_config.search_space(1)
|
128 |
-
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
|
129 |
-
hidet.option.cache_dir("local_cache")
|
130 |
-
# automatically transform the model to use float16 data type
|
131 |
-
hidet.torch.dynamo_config.use_fp16(True)
|
132 |
-
# use float16 data type as the accumulate data type in operators with reduction
|
133 |
-
hidet.torch.dynamo_config.use_fp16_reduction(True)
|
134 |
-
# use tensorcore
|
135 |
-
hidet.torch.dynamo_config.use_tensor_core()
|
136 |
-
# Preload and compile both models
|
137 |
-
hidet.torch.dynamo_config.steal_weights(False)
|
138 |
-
|
139 |
pipe = load_and_prepare_model()
|
140 |
|
141 |
MAX_SEED = np.iinfo(np.int64).max
|
|
|
6 |
# copies of the Software, and to permit persons to whom the Software is
|
7 |
import spaces
|
8 |
import os
|
|
|
9 |
import random
|
10 |
import uuid
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import torch
|
15 |
+
#import diffusers
|
|
|
|
|
|
|
|
|
16 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
17 |
from diffusers import EulerAncestralDiscreteScheduler
|
18 |
from typing import Tuple
|
|
|
26 |
torch.backends.cudnn.allow_tf32 = False
|
27 |
torch.backends.cudnn.deterministic = False
|
28 |
torch.backends.cudnn.benchmark = False
|
29 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
30 |
+
torch.backends.cuda.preferred_linalg_library="cusolver"
|
31 |
torch.set_float32_matmul_precision("highest")
|
32 |
|
33 |
FTP_HOST = "1ink.us"
|
|
|
107 |
pipe.safety_checker=None
|
108 |
#pipe.unet.to(memory_format=torch.channels_last)
|
109 |
#pipe.enable_vae_tiling()
|
|
|
|
|
110 |
pipe.to(device=device, dtype=torch.bfloat16)
|
111 |
|
112 |
return pipe
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
pipe = load_and_prepare_model()
|
115 |
|
116 |
MAX_SEED = np.iinfo(np.int64).max
|