ford442 commited on
Commit
0d68287
·
verified ·
1 Parent(s): a70ff90

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -104,7 +104,6 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
104
  if not negative:
105
  negative = ""
106
  return p.replace("{prompt}", positive), n + negative
107
-
108
  def load_and_prepare_model(model_id):
109
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
110
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
@@ -113,13 +112,14 @@ def load_and_prepare_model(model_id):
113
  #vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
114
  #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
115
  #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
116
- vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae') # ,use_safetensors=True FAILS
117
  #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
118
  #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
119
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
120
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
121
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
122
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
 
123
  #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
124
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
125
 
@@ -141,23 +141,22 @@ def load_and_prepare_model(model_id):
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
 
144
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
145
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
146
  #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
147
- pipe.vae = vaeX.to(torch.bfloat16)
148
  #pipe.unet = unetX
149
  #pipe.vae.do_resize=False
 
150
  #pipe.vae=vae.to(torch.bfloat16)
151
  #pipe.unet=pipeX.unet
152
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
153
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
154
 
155
  pipe.to(device)
156
-
157
-
158
  pipe.to(torch.bfloat16)
159
 
160
- #apply_hidiffusion(pipe)
161
 
162
  #pipe.unet.set_default_attn_processor()
163
  #pipe.vae.set_default_attn_processor()
@@ -179,7 +178,7 @@ def load_and_prepare_model(model_id):
179
  #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
180
  #sched = DDIMScheduler.from_config(pipe.scheduler.config)
181
  return pipe
182
-
183
  # Preload and compile both models
184
  models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
185
 
@@ -223,9 +222,9 @@ def uploadNote():
223
  f.write(f"SPACE SETUP: \n")
224
  f.write(f"Use Model Dtype: no \n")
225
  f.write(f"Model Scheduler: Euler_a custom after cuda \n")
226
- f.write(f"Model VAE: juggernaut to bfloat before cuda \n")
227
  f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
228
- f.write(f"Model HiDiffusion OFF \n")
229
  f.write(f"Now added pip 24 \n")
230
  upload_to_ftp(filename)
231
 
 
104
  if not negative:
105
  negative = ""
106
  return p.replace("{prompt}", positive), n + negative
 
107
  def load_and_prepare_model(model_id):
108
  model_dtypes = {"ford442/RealVisXL_V5.0_BF16": torch.bfloat16,}
109
  dtype = model_dtypes.get(model_id, torch.bfloat16) # Default to float32 if not found
 
112
  #vae = AutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2',use_safetensors=False)
113
  #vae = AutoencoderKL.from_single_file('https://huggingface.co/ford442/sdxl-vae-bf16/mySLR/myslrVAE_v10.safetensors')
114
  #vaeX = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse",use_safetensors=True)
115
+ vaeX = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
116
  #vaeX = AutoencoderKL.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
117
  #unetX = UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_BF16',subfolder='unet').to(torch.bfloat16) # ,use_safetensors=True FAILS
118
  # vae = AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",safety_checker=None).to(torch.bfloat16)
119
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler',beta_schedule="scaled_linear", steps_offset=1,timestep_spacing="trailing"))
120
  #sched = EulerAncestralDiscreteScheduler.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='scheduler', steps_offset=1,timestep_spacing="trailing")
121
  #sched = EulerAncestralDiscreteScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
122
+ sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
123
  #pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0").to(torch.bfloat16)
124
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
125
 
 
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
144
+
145
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
146
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
147
  #pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained('SG161222/RealVisXL_V5.0', subfolder='scheduler', algorithm_type='sde-dpmsolver++')
148
+ pipe.vae = vaeX
149
  #pipe.unet = unetX
150
  #pipe.vae.do_resize=False
151
+ pipe.scheduler = sched
152
  #pipe.vae=vae.to(torch.bfloat16)
153
  #pipe.unet=pipeX.unet
154
  #pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
 
155
 
156
  pipe.to(device)
 
 
157
  pipe.to(torch.bfloat16)
158
 
159
+ apply_hidiffusion(pipe)
160
 
161
  #pipe.unet.set_default_attn_processor()
162
  #pipe.vae.set_default_attn_processor()
 
178
  #sched = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, beta_schedule="linear", algorithm_type="dpmsolver++")
179
  #sched = DDIMScheduler.from_config(pipe.scheduler.config)
180
  return pipe
181
+
182
  # Preload and compile both models
183
  models = {key: load_and_prepare_model(value) for key, value in MODEL_OPTIONS.items()}
184
 
 
222
  f.write(f"SPACE SETUP: \n")
223
  f.write(f"Use Model Dtype: no \n")
224
  f.write(f"Model Scheduler: Euler_a custom after cuda \n")
225
+ f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
226
  f.write(f"Model UNET: default ford442/RealVisXL_V5.0_BF16 \n")
227
+ f.write(f"Model HiDiffusion ON \n")
228
  f.write(f"Now added pip 24 \n")
229
  upload_to_ftp(filename)
230