import cv2 import numpy as np import streamlit as st from datasets import load_dataset from PIL import Image from matplotlib.pyplot import imshow from transformers import pipeline from transformers import AutoFeatureExtractor, AutoModelForImageClassification def load_dataset_from_Hugging_Face(): reloaded_dataset_thermal = load_dataset("gokulraja17/rice-thermal-demo") reloaded_dataset_rgb = load_dataset("gokulraja17/rice-rgb-demo2") return reloaded_dataset_thermal,reloaded_dataset_rgb def load_model_from_Hugging_Face(): feature_extractor_thermal = AutoFeatureExtractor.from_pretrained("gokulraja17/convnext-fine-tuned-thermal-demo2") model_thermal = AutoModelForImageClassification.from_pretrained("gokulraja17/convnext-fine-tuned-thermal-demo2") feature_extractor_rgb = AutoFeatureExtractor.from_pretrained("gokulraja17/convnext-fine-tuned-rgb-demo2") model_rgb = AutoModelForImageClassification.from_pretrained("gokulraja17/convnext-fine-tuned-rgb-demo2") return feature_extractor_thermal,model_thermal,feature_extractor_rgb,model_rgb def get_image_and_label(reloaded_dataset_thermal,reloaded_dataset_rgb,index): url_thermal = reloaded_dataset_thermal["test"][index] url_rgb = reloaded_dataset_rgb["test"][index] return url_thermal["image"],url_thermal["label"],url_rgb["image"],url_rgb["label"] def create_pipeline(feature_extractor_thermal,model_thermal,feature_extractor_rgb,model_rgb): pipe_rgb = pipeline("image-classification", model=model_rgb, feature_extractor=feature_extractor_rgb) pipe_thermal = pipeline("image-classification", model=model_thermal, feature_extractor=feature_extractor_thermal) return pipe_thermal,pipe_rgb def get_output_label(result): max = -999 label = "" for i in result: if(max