Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import torch | |
from spectro import wav_bytes_from_spectrogram_image | |
from diffusers import StableDiffusionPipeline | |
model_id = "riffusion/riffusion-model-v1" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
def predict(prompt): | |
spec = pipe(prompt).images[0] | |
print(spec) | |
wav = wav_bytes_from_spectrogram_image(spec) | |
with open("output.wav", "wb") as f: | |
f.write(wav[0].getbuffer()) | |
return 'output.wav' | |
gr.Interface( | |
predict, | |
inputs="text", | |
outputs=[gr.Audio(type='filepath')], | |
title="Riffusion Text-to-Music", | |
description="Describe a musical prompt, generate music by getting a Riffusion spectrogram and its corresponding sound" | |
).queue(max_size=32, concurrency_count=20).launch(debug=True) | |