Spaces:
Running
on
Zero
Running
on
Zero
# This is an improved version and model of HED edge detection with Apache License, Version 2.0. | |
# Please use this implementation in your products | |
# This implementation may produce slightly different results from Saining Xie's official implementations, | |
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. | |
# Different from official models and other implementations, this is an RGB-input model (rather than BGR) | |
# and in this way it works better for gradio's RGB protocol | |
import os | |
import warnings | |
import cv2 | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from ..util import HWC3, nms, resize_image, safe_step | |
class DoubleConvBlock(torch.nn.Module): | |
def __init__(self, input_channel, output_channel, layer_number): | |
super().__init__() | |
self.convs = torch.nn.Sequential() | |
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) | |
for i in range(1, layer_number): | |
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) | |
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) | |
def __call__(self, x, down_sampling=False): | |
h = x | |
if down_sampling: | |
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) | |
for conv in self.convs: | |
h = conv(h) | |
h = torch.nn.functional.relu(h) | |
return h, self.projection(h) | |
class ControlNetHED_Apache2(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) | |
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) | |
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) | |
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) | |
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) | |
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) | |
def __call__(self, x): | |
h = x - self.norm | |
h, projection1 = self.block1(h) | |
h, projection2 = self.block2(h, down_sampling=True) | |
h, projection3 = self.block3(h, down_sampling=True) | |
h, projection4 = self.block4(h, down_sampling=True) | |
h, projection5 = self.block5(h, down_sampling=True) | |
return projection1, projection2, projection3, projection4, projection5 | |
class HEDdetector: | |
def __init__(self, netNetwork): | |
self.netNetwork = netNetwork | |
def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False): | |
filename = filename or "ControlNetHED.pth" | |
if os.path.isdir(pretrained_model_or_path): | |
model_path = os.path.join(pretrained_model_or_path, filename) | |
else: | |
model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) | |
netNetwork = ControlNetHED_Apache2() | |
netNetwork.load_state_dict(torch.load(model_path, map_location='cpu')) | |
netNetwork.float().eval() | |
return cls(netNetwork) | |
def to(self, device): | |
self.netNetwork.to(device) | |
return self | |
def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, **kwargs): | |
if "return_pil" in kwargs: | |
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) | |
output_type = "pil" if kwargs["return_pil"] else "np" | |
if type(output_type) is bool: | |
warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") | |
if output_type: | |
output_type = "pil" | |
device = next(iter(self.netNetwork.parameters())).device | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image, dtype=np.uint8) | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, detect_resolution) | |
assert input_image.ndim == 3 | |
H, W, C = input_image.shape | |
with torch.no_grad(): | |
image_hed = torch.from_numpy(input_image.copy()).float().to(device) | |
image_hed = rearrange(image_hed, 'h w c -> 1 c h w') | |
edges = self.netNetwork(image_hed) | |
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] | |
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] | |
edges = np.stack(edges, axis=2) | |
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) | |
if safe: | |
edge = safe_step(edge) | |
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | |
detected_map = edge | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
if scribble: | |
detected_map = nms(detected_map, 127, 3.0) | |
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) | |
detected_map[detected_map > 4] = 255 | |
detected_map[detected_map < 255] = 0 | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map | |