from collections.abc import Generator from functools import lru_cache import json import logging from pathlib import Path import typing from typing import Any, Literal import huggingface_hub from huggingface_hub.constants import HF_HUB_CACHE from pydantic import BaseModel from faster_whisper_server.api_models import Model logger = logging.getLogger(__name__) LIBRARY_NAME = "ctranslate2" TASK_NAME = "automatic-speech-recognition" def does_local_model_exist(model_id: str) -> bool: return any(model_id == model.repo_id for model, _ in list_local_whisper_models()) def list_whisper_models() -> Generator[Model, None, None]: models = huggingface_hub.list_models(library="ctranslate2", tags="automatic-speech-recognition", cardData=True) models = list(models) models.sort(key=lambda model: model.downloads or -1, reverse=True) for model in models: assert model.created_at is not None assert model.card_data is not None assert model.card_data.language is None or isinstance(model.card_data.language, str | list) if model.card_data.language is None: language = [] elif isinstance(model.card_data.language, str): language = [model.card_data.language] else: language = model.card_data.language transformed_model = Model( id=model.id, created=int(model.created_at.timestamp()), object_="model", owned_by=model.id.split("/")[0], language=language, ) yield transformed_model def list_local_whisper_models() -> ( Generator[tuple[huggingface_hub.CachedRepoInfo, huggingface_hub.ModelCardData], None, None] ): hf_cache = huggingface_hub.scan_cache_dir() hf_models = [repo for repo in list(hf_cache.repos) if repo.repo_type == "model"] for model in hf_models: revision = next(iter(model.revisions)) cached_readme_file = next((f for f in revision.files if f.file_name == "README.md"), None) if cached_readme_file: readme_file_path = Path(cached_readme_file.file_path) else: # NOTE: the README.md doesn't get downloaded when `WhisperModel` is called logger.debug(f"Model {model.repo_id} does not have a README.md file. Downloading it.") readme_file_path = Path(huggingface_hub.hf_hub_download(model.repo_id, "README.md")) model_card = huggingface_hub.ModelCard.load(readme_file_path) model_card_data = typing.cast(huggingface_hub.ModelCardData, model_card.data) if ( model_card_data.library_name == LIBRARY_NAME and model_card_data.tags is not None and TASK_NAME in model_card_data.tags ): yield model, model_card_data def get_whisper_models() -> Generator[Model, None, None]: models = huggingface_hub.list_models(library="ctranslate2", tags="automatic-speech-recognition", cardData=True) models = list(models) models.sort(key=lambda model: model.downloads or -1, reverse=True) for model in models: assert model.created_at is not None assert model.card_data is not None assert model.card_data.language is None or isinstance(model.card_data.language, str | list) if model.card_data.language is None: language = [] elif isinstance(model.card_data.language, str): language = [model.card_data.language] else: language = model.card_data.language transformed_model = Model( id=model.id, created=int(model.created_at.timestamp()), object_="model", owned_by=model.id.split("/")[0], language=language, ) yield transformed_model class PiperModel(BaseModel): id: str object: Literal["model"] = "model" created: int owned_by: Literal["rhasspy"] = "rhasspy" path: Path config_path: Path def get_model_path(model_id: str, *, cache_dir: str | Path | None = None) -> Path | None: if cache_dir is None: cache_dir = HF_HUB_CACHE cache_dir = Path(cache_dir).expanduser().resolve() if not cache_dir.exists(): raise huggingface_hub.CacheNotFound( f"Cache directory not found: {cache_dir}. Please use `cache_dir` argument or set `HF_HUB_CACHE` environment variable.", # noqa: E501 cache_dir=cache_dir, ) if cache_dir.is_file(): raise ValueError( f"Scan cache expects a directory but found a file: {cache_dir}. Please use `cache_dir` argument or set `HF_HUB_CACHE` environment variable." # noqa: E501 ) for repo_path in cache_dir.iterdir(): if not repo_path.is_dir(): continue if repo_path.name == ".locks": # skip './.locks/' folder continue repo_type, repo_id = repo_path.name.split("--", maxsplit=1) repo_type = repo_type[:-1] # "models" -> "model" repo_id = repo_id.replace("--", "/") # google--fleurs -> "google/fleurs" if repo_type != "model": continue if model_id == repo_id: return repo_path return None def list_model_files( model_id: str, glob_pattern: str = "**/*", *, cache_dir: str | Path | None = None ) -> Generator[Path, None, None]: repo_path = get_model_path(model_id, cache_dir=cache_dir) if repo_path is None: return None snapshots_path = repo_path / "snapshots" if not snapshots_path.exists(): return None yield from list(snapshots_path.glob(glob_pattern)) def list_piper_models() -> Generator[PiperModel, None, None]: model_weights_files = list_model_files("rhasspy/piper-voices", glob_pattern="**/*.onnx") for model_weights_file in model_weights_files: model_config_file = model_weights_file.with_suffix(".json") yield PiperModel( id=model_weights_file.name, created=int(model_weights_file.stat().st_mtime), path=model_weights_file, config_path=model_config_file, ) # NOTE: It's debatable whether caching should be done here or by the caller. Should be revisited. @lru_cache def read_piper_voices_config() -> dict[str, Any]: voices_file = next(list_model_files("rhasspy/piper-voices", glob_pattern="**/voices.json"), None) if voices_file is None: raise FileNotFoundError("Could not find voices.json file") # noqa: EM101 return json.loads(voices_file.read_text()) @lru_cache def get_piper_voice_model_file(voice: str) -> Path: model_file = next(list_model_files("rhasspy/piper-voices", glob_pattern=f"**/{voice}.onnx"), None) if model_file is None: raise FileNotFoundError(f"Could not find model file for '{voice}' voice") return model_file class PiperVoiceConfigAudio(BaseModel): sample_rate: int quality: int class PiperVoiceConfig(BaseModel): audio: PiperVoiceConfigAudio # NOTE: there are more fields in the config, but we don't care about them @lru_cache def read_piper_voice_config(voice: str) -> PiperVoiceConfig: model_config_file = next(list_model_files("rhasspy/piper-voices", glob_pattern=f"**/{voice}.onnx.json"), None) if model_config_file is None: raise FileNotFoundError(f"Could not find config file for '{voice}' voice") return PiperVoiceConfig.model_validate_json(model_config_file.read_text())