from __future__ import annotations import asyncio import logging import time from contextlib import asynccontextmanager from io import BytesIO from typing import Annotated from fastapi import (Depends, FastAPI, Response, UploadFile, WebSocket, WebSocketDisconnect) from fastapi.websockets import WebSocketState from faster_whisper import WhisperModel from faster_whisper.vad import VadOptions, get_speech_timestamps from speaches.asr import FasterWhisperASR, TranscribeOpts from speaches.audio import AudioStream, audio_samples_from_file from speaches.config import SAMPLES_PER_SECOND, Language, config from speaches.core import Transcription from speaches.logger import logger from speaches.server_models import (ResponseFormat, TranscriptionResponse, TranscriptionVerboseResponse) from speaches.transcriber import audio_transcriber whisper: WhisperModel = None # type: ignore @asynccontextmanager async def lifespan(_: FastAPI): global whisper logging.debug(f"Loading {config.whisper.model}") start = time.perf_counter() whisper = WhisperModel( config.whisper.model, device=config.whisper.inference_device, compute_type=config.whisper.compute_type, ) end = time.perf_counter() logger.debug(f"Loaded {config.whisper.model} loaded in {end - start:.2f} seconds") yield app = FastAPI(lifespan=lifespan) @app.get("/health") def health() -> Response: return Response(status_code=200, content="Everything is peachy!") async def transcription_parameters( language: Language = Language.EN, vad_filter: bool = True, condition_on_previous_text: bool = False, ) -> TranscribeOpts: return TranscribeOpts( language=language, vad_filter=vad_filter, condition_on_previous_text=condition_on_previous_text, ) TranscribeParams = Annotated[TranscribeOpts, Depends(transcription_parameters)] @app.post("/v1/audio/transcriptions") async def transcribe_file( file: UploadFile, transcription_opts: TranscribeParams, response_format: ResponseFormat = ResponseFormat.JSON, ) -> str: asr = FasterWhisperASR(whisper, transcription_opts) audio_samples = audio_samples_from_file(file.file) audio = AudioStream(audio_samples) transcription, _ = await asr.transcribe(audio) return format_transcription(transcription, response_format) async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None: try: while True: bytes_ = await asyncio.wait_for( ws.receive_bytes(), timeout=config.max_no_data_seconds ) logger.debug(f"Received {len(bytes_)} bytes of audio data") audio_samples = audio_samples_from_file(BytesIO(bytes_)) audio_stream.extend(audio_samples) if audio_stream.duration - config.inactivity_window_seconds >= 0: audio = audio_stream.after( audio_stream.duration - config.inactivity_window_seconds ) vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0) timestamps = get_speech_timestamps(audio.data, vad_opts) if len(timestamps) == 0: logger.info( f"No speech detected in the last {config.inactivity_window_seconds} seconds." ) break elif ( # last speech end time config.inactivity_window_seconds - timestamps[-1]["end"] / SAMPLES_PER_SECOND >= config.max_inactivity_seconds ): logger.info( f"Not enough speech in the last {config.inactivity_window_seconds} seconds." ) break except asyncio.TimeoutError: logger.info( f"No data received in {config.max_no_data_seconds} seconds. Closing the connection." ) except WebSocketDisconnect as e: logger.info(f"Client disconnected: {e}") audio_stream.close() def format_transcription( transcription: Transcription, response_format: ResponseFormat ) -> str: if response_format == ResponseFormat.TEXT: return transcription.text elif response_format == ResponseFormat.JSON: return TranscriptionResponse(text=transcription.text).model_dump_json() elif response_format == ResponseFormat.VERBOSE_JSON: return TranscriptionVerboseResponse( duration=transcription.duration, text=transcription.text, words=transcription.words, ).model_dump_json() @app.websocket("/v1/audio/transcriptions") async def transcribe_stream( ws: WebSocket, transcription_opts: TranscribeParams, response_format: ResponseFormat = ResponseFormat.JSON, ) -> None: await ws.accept() asr = FasterWhisperASR(whisper, transcription_opts) audio_stream = AudioStream() async with asyncio.TaskGroup() as tg: tg.create_task(audio_receiver(ws, audio_stream)) async for transcription in audio_transcriber(asr, audio_stream): logger.debug(f"Sending transcription: {transcription.text}") # Or should it be if ws.client_state == WebSocketState.DISCONNECTED: break await ws.send_text(format_transcription(transcription, response_format)) if not ws.client_state == WebSocketState.DISCONNECTED: logger.info("Closing the connection.") await ws.close()