# Faster Whisper Server `faster-whisper-server` is an OpenAI API compatible transcription server which uses [faster-whisper](https://github.com/SYSTRAN/faster-whisper) as it's backend. Features: - GPU and CPU support. - Easily deployable using Docker. - **Configurable through environment variables (see [config.py](./faster_whisper_server/config.py))**. - OpenAI API compatible. Please create an issue if you find a bug, have a question, or a feature suggestion. ## OpenAI API Compatibility ++ See [OpenAI API reference](https://platform.openai.com/docs/api-reference/audio) for more information. - Audio file transcription via `POST /v1/audio/transcriptions` endpoint. - Unlike OpenAI's API, `faster-whisper-server` also supports streaming transcriptions(and translations). This is usefull for when you want to process large audio files would rather receive the transcription in chunks as they are processed rather than waiting for the whole file to be transcribe. It works in the similar way to chat messages are being when chatting with LLMs. - Audio file translation via `POST /v1/audio/translations` endpoint. - (WIP) Live audio transcription via `WS /v1/audio/transcriptions` endpoint. - LocalAgreement2 ([paper](https://aclanthology.org/2023.ijcnlp-demo.3.pdf) | [original implementation](https://github.com/ufal/whisper_streaming)) algorithm is used for live transcription. - Only transcription of single channel, 16000 sample rate, raw, 16-bit little-endian audio is supported. ## Quick Start [Hugging Face Space](https://huggingface.co/spaces/Iatalking/fast-whisper-server) ![image](https://github.com/fedirz/faster-whisper-server/assets/76551385/6d215c52-ded5-41d2-89a5-03a6fd113aa0) Using Docker ```bash docker run --gpus=all --publish 8000:8000 --volume ~/.cache/huggingface:/root/.cache/huggingface fedirz/faster-whisper-server:latest-cuda # or docker run --publish 8000:8000 --volume ~/.cache/huggingface:/root/.cache/huggingface fedirz/faster-whisper-server:latest-cpu ``` Using Docker Compose ```bash curl -sO https://raw.githubusercontent.com/fedirz/faster-whisper-server/master/compose.yaml docker compose up --detach faster-whisper-server-cuda # or docker compose up --detach faster-whisper-server-cpu ``` Using Kubernetes: [tutorial](https://substratus.ai/blog/deploying-faster-whisper-on-k8s) ## Usage If you are looking for a step-by-step walkthrough, checkout [this](https://www.youtube.com/watch?app=desktop&v=vSN-oAl6LVs) YouTube video. ### OpenAI API CLI ```bash export OPENAI_API_KEY="cant-be-empty" export OPENAI_BASE_URL=http://localhost:8000/v1/ ``` ```bash openai api audio.transcriptions.create -m Systran/faster-distil-whisper-large-v3 -f audio.wav --response-format text openai api audio.translations.create -m Systran/faster-distil-whisper-large-v3 -f audio.wav --response-format verbose_json ``` ### OpenAI API Python SDK ```python from openai import OpenAI client = OpenAI(api_key="cant-be-empty", base_url="http://localhost:8000/v1/") audio_file = open("audio.wav", "rb") transcript = client.audio.transcriptions.create( model="Systran/faster-distil-whisper-large-v3", file=audio_file ) print(transcript.text) ``` ### CURL ```bash # If `model` isn't specified, the default model is used curl http://localhost:8000/v1/audio/transcriptions -F "file=@audio.wav" curl http://localhost:8000/v1/audio/transcriptions -F "file=@audio.mp3" curl http://localhost:8000/v1/audio/transcriptions -F "file=@audio.wav" -F "stream=true" curl http://localhost:8000/v1/audio/transcriptions -F "file=@audio.wav" -F "model=Systran/faster-distil-whisper-large-v3" # It's recommended that you always specify the language as that will reduce the transcription time curl http://localhost:8000/v1/audio/transcriptions -F "file=@audio.wav" -F "language=en" curl http://localhost:8000/v1/audio/translations -F "file=@audio.wav" ``` ### Live Transcription (using Web Socket) From [live-audio](./examples/live-audio) example https://github.com/fedirz/faster-whisper-server/assets/76551385/e334c124-af61-41d4-839c-874be150598f [websocat](https://github.com/vi/websocat?tab=readme-ov-file#installation) installation is required. Live transcribing audio data from a microphone. ```bash ffmpeg -loglevel quiet -f alsa -i default -ac 1 -ar 16000 -f s16le - | websocat --binary ws://localhost:8000/v1/audio/transcriptions ```