import asyncio import logging import time from faster_whisper import transcribe from faster_whisper_server.audio import Audio from faster_whisper_server.core import Segment, Transcription, Word logger = logging.getLogger(__name__) class FasterWhisperASR: def __init__( self, whisper: transcribe.WhisperModel, **kwargs, ) -> None: self.whisper = whisper self.transcribe_opts = kwargs def _transcribe( self, audio: Audio, prompt: str | None = None, ) -> tuple[Transcription, transcribe.TranscriptionInfo]: start = time.perf_counter() segments, transcription_info = self.whisper.transcribe( audio.data, initial_prompt=prompt, word_timestamps=True, **self.transcribe_opts, ) segments = Segment.from_faster_whisper_segments(segments) words = Word.from_segments(segments) for word in words: word.offset(audio.start) transcription = Transcription(words) end = time.perf_counter() logger.info( f"Transcribed {audio} in {end - start:.2f} seconds. Prompt: {prompt}. Transcription: {transcription.text}" ) return (transcription, transcription_info) async def transcribe( self, audio: Audio, prompt: str | None = None, ) -> tuple[Transcription, transcribe.TranscriptionInfo]: """Wrapper around _transcribe so it can be used in async context.""" # is this the optimal way to execute a blocking call in an async context? # TODO: verify performance when running inference on a CPU return await asyncio.get_running_loop().run_in_executor( None, self._transcribe, audio, prompt, )