Fedir Zadniprovskyi
misc: tests
81fa68b
raw
history blame
2.6 kB
import json
import os
import time
from typing import Generator
import pytest
from fastapi.testclient import TestClient
from starlette.testclient import WebSocketTestSession
from faster_whisper_server.config import BYTES_PER_SECOND
from faster_whisper_server.server_models import TranscriptionVerboseJsonResponse
SIMILARITY_THRESHOLD = 0.97
AUDIO_FILES_LIMIT = 5
AUDIO_FILE_DIR = "tests/data"
TRANSCRIBE_ENDPOINT = "/v1/audio/transcriptions?response_format=verbose_json"
@pytest.fixture()
def ws(client: TestClient) -> Generator[WebSocketTestSession, None, None]:
with client.websocket_connect(TRANSCRIBE_ENDPOINT) as ws:
yield ws
def get_audio_file_paths():
file_paths = []
directory = "tests/data"
for filename in sorted(os.listdir(directory)[:AUDIO_FILES_LIMIT]):
file_paths.append(os.path.join(directory, filename))
return file_paths
file_paths = get_audio_file_paths()
def stream_audio_data(
ws: WebSocketTestSession, data: bytes, *, chunk_size: int = 4000, speed: float = 1.0
):
for i in range(0, len(data), chunk_size):
ws.send_bytes(data[i : i + chunk_size])
delay = len(data[i : i + chunk_size]) / BYTES_PER_SECOND / speed
time.sleep(delay)
def transcribe_audio_data(
client: TestClient, data: bytes
) -> TranscriptionVerboseJsonResponse:
response = client.post(
TRANSCRIBE_ENDPOINT,
files={"file": ("audio.raw", data, "audio/raw")},
)
data = json.loads(response.json()) # TODO: figure this out
return TranscriptionVerboseJsonResponse(**data) # type: ignore
# @pytest.mark.parametrize("file_path", file_paths)
# def test_ws_audio_transcriptions(
# client: TestClient, ws: WebSocketTestSession, file_path: str
# ):
# with open(file_path, "rb") as file:
# data = file.read()
#
# streaming_transcription: TranscriptionVerboseJsonResponse = None # type: ignore
# thread = threading.Thread(
# target=stream_audio_data, args=(ws, data), kwargs={"speed": 4.0}
# )
# thread.start()
# while True:
# try:
# streaming_transcription = TranscriptionVerboseJsonResponse(
# **ws.receive_json()
# )
# except WebSocketDisconnect:
# break
# file_transcription = transcribe_audio_data(client, data)
# s = SequenceMatcher(
# lambda x: x == " ", file_transcription.text, streaming_transcription.text
# )
# assert (
# s.ratio() > SIMILARITY_THRESHOLD
# ), f"\nExpected: {file_transcription.text}\nReceived: {streaming_transcription.text}"