File size: 13,162 Bytes
313814b
 
 
 
 
 
8c12cdc
313814b
f5b5ebf
d0feed8
 
 
f5b5ebf
f3632d1
d0feed8
 
 
 
 
 
e01d72d
313814b
 
 
f5b5ebf
f3632d1
313814b
39ee116
 
 
 
 
 
 
 
 
 
 
f5b5ebf
d0feed8
 
 
39ee116
313814b
f5b5ebf
313814b
 
c8f37a4
f5b5ebf
aada575
f5b5ebf
 
 
aada575
 
 
f5b5ebf
c8f37a4
313814b
c8f37a4
313814b
aada575
313814b
 
 
aada575
47627a9
d16cb74
f5b5ebf
aada575
 
 
 
 
 
313814b
f5b5ebf
aada575
f5b5ebf
313814b
 
 
 
 
 
 
39ee116
313814b
 
f3632d1
f5b5ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3632d1
 
f5b5ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c12cdc
 
 
 
f3632d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ce933
aada575
48ce933
f3632d1
48ce933
db500b1
48ce933
e01d72d
48ce933
 
aada575
48ce933
 
 
 
 
 
 
e01d72d
 
 
 
d16cb74
48ce933
e01d72d
 
 
 
 
 
 
 
 
8c12cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e01d72d
48ce933
 
4bdd7f2
 
313814b
aada575
4bdd7f2
f3632d1
db500b1
4bdd7f2
db500b1
4bdd7f2
 
 
 
 
e01d72d
4bdd7f2
e41bc7f
aada575
4bdd7f2
 
48ce933
4bdd7f2
 
 
 
e41bc7f
4bdd7f2
e01d72d
 
 
 
d16cb74
4bdd7f2
e01d72d
 
 
 
 
 
 
 
 
8c12cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e01d72d
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f56267
 
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3632d1
db500b1
d16cb74
 
 
4bdd7f2
313814b
 
4bdd7f2
 
 
 
 
 
aada575
4bdd7f2
313814b
 
 
 
 
 
 
aada575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313814b
 
8ad3023
313814b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from __future__ import annotations

import asyncio
import time
from contextlib import asynccontextmanager
from io import BytesIO
from typing import Annotated, Generator, Literal, OrderedDict

import huggingface_hub
from fastapi import (
    FastAPI,
    Form,
    HTTPException,
    Path,
    Query,
    Response,
    UploadFile,
    WebSocket,
    WebSocketDisconnect,
)
from fastapi.responses import StreamingResponse
from fastapi.websockets import WebSocketState
from faster_whisper import WhisperModel
from faster_whisper.vad import VadOptions, get_speech_timestamps
from huggingface_hub.hf_api import ModelInfo
from pydantic import AfterValidator

from faster_whisper_server import utils
from faster_whisper_server.asr import FasterWhisperASR
from faster_whisper_server.audio import AudioStream, audio_samples_from_file
from faster_whisper_server.config import (
    SAMPLES_PER_SECOND,
    Language,
    ResponseFormat,
    config,
)
from faster_whisper_server.logger import logger
from faster_whisper_server.server_models import (
    ModelObject,
    TranscriptionJsonResponse,
    TranscriptionVerboseJsonResponse,
)
from faster_whisper_server.transcriber import audio_transcriber

loaded_models: OrderedDict[str, WhisperModel] = OrderedDict()


def load_model(model_name: str) -> WhisperModel:
    if model_name in loaded_models:
        logger.debug(f"{model_name} model already loaded")
        return loaded_models[model_name]
    if len(loaded_models) >= config.max_models:
        oldest_model_name = next(iter(loaded_models))
        logger.info(
            f"Max models ({config.max_models}) reached. Unloading the oldest model: {oldest_model_name}"
        )
        del loaded_models[oldest_model_name]
    logger.debug(f"Loading {model_name}...")
    start = time.perf_counter()
    # NOTE: will raise an exception if the model name isn't valid
    whisper = WhisperModel(
        model_name,
        device=config.whisper.inference_device,
        compute_type=config.whisper.compute_type,
    )
    logger.info(
        f"Loaded {model_name} loaded in {time.perf_counter() - start:.2f} seconds. {config.whisper.inference_device}({config.whisper.compute_type}) will be used for inference."
    )
    loaded_models[model_name] = whisper
    return whisper


@asynccontextmanager
async def lifespan(_: FastAPI):
    load_model(config.whisper.model)
    yield
    for model in loaded_models.keys():
        logger.info(f"Unloading {model}")
        del loaded_models[model]


app = FastAPI(lifespan=lifespan)


@app.get("/health")
def health() -> Response:
    return Response(status_code=200, content="OK")


@app.get("/v1/models")
def get_models() -> list[ModelObject]:
    models = huggingface_hub.list_models(library="ctranslate2")
    models = [
        ModelObject(
            id=model.id,
            created=int(model.created_at.timestamp()),
            object_="model",
            owned_by=model.id.split("/")[0],
        )
        for model in models
        if model.created_at is not None
    ]
    return models


@app.get("/v1/models/{model_name:path}")
def get_model(model_name: Annotated[str, Path()]) -> ModelObject:
    models = list(
        huggingface_hub.list_models(model_name=model_name, library="ctranslate2")
    )
    if len(models) == 0:
        raise HTTPException(status_code=404, detail="Model doesn't exists")
    exact_match: ModelInfo | None = None
    for model in models:
        if model.id == model_name:
            exact_match = model
            break
    if exact_match is None:
        raise HTTPException(
            status_code=404,
            detail=f"Model doesn't exists. Possible matches: {", ".join([model.id for model in models])}",
        )
    assert exact_match.created_at is not None
    return ModelObject(
        id=exact_match.id,
        created=int(exact_match.created_at.timestamp()),
        object_="model",
        owned_by=exact_match.id.split("/")[0],
    )


def format_as_sse(data: str) -> str:
    return f"data: {data}\n\n"


def handle_default_openai_model(model_name: str) -> str:
    """This exists because some callers may not be able override the default("whisper-1") model name.
    For example, https://github.com/open-webui/open-webui/issues/2248#issuecomment-2162997623.
    """
    if model_name == "whisper-1":
        logger.info(
            f"{model_name} is not a valid model name. Using {config.whisper.model} instead."
        )
        return config.whisper.model
    return model_name


ModelName = Annotated[str, AfterValidator(handle_default_openai_model)]


@app.post("/v1/audio/translations")
def translate_file(
    file: Annotated[UploadFile, Form()],
    model: Annotated[ModelName, Form()] = config.whisper.model,
    prompt: Annotated[str | None, Form()] = None,
    response_format: Annotated[ResponseFormat, Form()] = config.default_response_format,
    temperature: Annotated[float, Form()] = 0.0,
    stream: Annotated[bool, Form()] = False,
):
    start = time.perf_counter()
    whisper = load_model(model)
    segments, transcription_info = whisper.transcribe(
        file.file,
        task="translate",
        initial_prompt=prompt,
        temperature=temperature,
        vad_filter=True,
    )

    if not stream:
        segments = list(segments)
        logger.info(
            f"Translated {transcription_info.duration}({transcription_info.duration_after_vad}) seconds of audio in {time.perf_counter() - start:.2f} seconds"
        )
        if response_format == ResponseFormat.TEXT:
            return utils.segments_text(segments)
        elif response_format == ResponseFormat.JSON:
            return TranscriptionJsonResponse.from_segments(segments)
        elif response_format == ResponseFormat.VERBOSE_JSON:
            return TranscriptionVerboseJsonResponse.from_segments(
                segments, transcription_info
            )
    else:

        def segment_responses() -> Generator[str, None, None]:
            for segment in segments:
                if response_format == ResponseFormat.TEXT:
                    data = segment.text
                elif response_format == ResponseFormat.JSON:
                    data = TranscriptionJsonResponse.from_segments(
                        [segment]
                    ).model_dump_json()
                elif response_format == ResponseFormat.VERBOSE_JSON:
                    data = TranscriptionVerboseJsonResponse.from_segment(
                        segment, transcription_info
                    ).model_dump_json()
                yield format_as_sse(data)

        return StreamingResponse(segment_responses(), media_type="text/event-stream")


# https://platform.openai.com/docs/api-reference/audio/createTranscription
# https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915
@app.post("/v1/audio/transcriptions")
def transcribe_file(
    file: Annotated[UploadFile, Form()],
    model: Annotated[ModelName, Form()] = config.whisper.model,
    language: Annotated[Language | None, Form()] = config.default_language,
    prompt: Annotated[str | None, Form()] = None,
    response_format: Annotated[ResponseFormat, Form()] = config.default_response_format,
    temperature: Annotated[float, Form()] = 0.0,
    timestamp_granularities: Annotated[
        list[Literal["segments"] | Literal["words"]],
        Form(alias="timestamp_granularities[]"),
    ] = ["segments"],
    stream: Annotated[bool, Form()] = False,
):
    start = time.perf_counter()
    whisper = load_model(model)
    segments, transcription_info = whisper.transcribe(
        file.file,
        task="transcribe",
        language=language,
        initial_prompt=prompt,
        word_timestamps="words" in timestamp_granularities,
        temperature=temperature,
        vad_filter=True,
    )

    if not stream:
        segments = list(segments)
        logger.info(
            f"Transcribed {transcription_info.duration}({transcription_info.duration_after_vad}) seconds of audio in {time.perf_counter() - start:.2f} seconds"
        )
        if response_format == ResponseFormat.TEXT:
            return utils.segments_text(segments)
        elif response_format == ResponseFormat.JSON:
            return TranscriptionJsonResponse.from_segments(segments)
        elif response_format == ResponseFormat.VERBOSE_JSON:
            return TranscriptionVerboseJsonResponse.from_segments(
                segments, transcription_info
            )
    else:

        def segment_responses() -> Generator[str, None, None]:
            for segment in segments:
                logger.info(
                    f"Transcribed {segment.end - segment.start} seconds of audio in {time.perf_counter() - start:.2f} seconds"
                )
                if response_format == ResponseFormat.TEXT:
                    data = segment.text
                elif response_format == ResponseFormat.JSON:
                    data = TranscriptionJsonResponse.from_segments(
                        [segment]
                    ).model_dump_json()
                elif response_format == ResponseFormat.VERBOSE_JSON:
                    data = TranscriptionVerboseJsonResponse.from_segment(
                        segment, transcription_info
                    ).model_dump_json()
                yield format_as_sse(data)

        return StreamingResponse(segment_responses(), media_type="text/event-stream")


async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
    try:
        while True:
            bytes_ = await asyncio.wait_for(
                ws.receive_bytes(), timeout=config.max_no_data_seconds
            )
            logger.debug(f"Received {len(bytes_)} bytes of audio data")
            audio_samples = audio_samples_from_file(BytesIO(bytes_))
            audio_stream.extend(audio_samples)
            if audio_stream.duration - config.inactivity_window_seconds >= 0:
                audio = audio_stream.after(
                    audio_stream.duration - config.inactivity_window_seconds
                )
                vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
                # NOTE: This is a synchronous operation that runs every time new data is received.
                # This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato.
                timestamps = get_speech_timestamps(audio.data, vad_opts)
                if len(timestamps) == 0:
                    logger.info(
                        f"No speech detected in the last {config.inactivity_window_seconds} seconds."
                    )
                    break
                elif (
                    # last speech end time
                    config.inactivity_window_seconds
                    - timestamps[-1]["end"] / SAMPLES_PER_SECOND
                    >= config.max_inactivity_seconds
                ):
                    logger.info(
                        f"Not enough speech in the last {config.inactivity_window_seconds} seconds."
                    )
                    break
    except asyncio.TimeoutError:
        logger.info(
            f"No data received in {config.max_no_data_seconds} seconds. Closing the connection."
        )
    except WebSocketDisconnect as e:
        logger.info(f"Client disconnected: {e}")
    audio_stream.close()


@app.websocket("/v1/audio/transcriptions")
async def transcribe_stream(
    ws: WebSocket,
    model: Annotated[ModelName, Query()] = config.whisper.model,
    language: Annotated[Language | None, Query()] = config.default_language,
    response_format: Annotated[
        ResponseFormat, Query()
    ] = config.default_response_format,
    temperature: Annotated[float, Query()] = 0.0,
) -> None:
    await ws.accept()
    transcribe_opts = {
        "language": language,
        "temperature": temperature,
        "vad_filter": True,
        "condition_on_previous_text": False,
    }
    whisper = load_model(model)
    asr = FasterWhisperASR(whisper, **transcribe_opts)
    audio_stream = AudioStream()
    async with asyncio.TaskGroup() as tg:
        tg.create_task(audio_receiver(ws, audio_stream))
        async for transcription in audio_transcriber(asr, audio_stream):
            logger.debug(f"Sending transcription: {transcription.text}")
            if ws.client_state == WebSocketState.DISCONNECTED:
                break

            if response_format == ResponseFormat.TEXT:
                await ws.send_text(transcription.text)
            elif response_format == ResponseFormat.JSON:
                await ws.send_json(
                    TranscriptionJsonResponse.from_transcription(
                        transcription
                    ).model_dump()
                )
            elif response_format == ResponseFormat.VERBOSE_JSON:
                await ws.send_json(
                    TranscriptionVerboseJsonResponse.from_transcription(
                        transcription
                    ).model_dump()
                )

    if not ws.client_state == WebSocketState.DISCONNECTED:
        logger.info("Closing the connection.")
        await ws.close()