File size: 10,776 Bytes
313814b
 
 
 
 
 
 
4bdd7f2
313814b
4bdd7f2
db7bf9a
e01d72d
313814b
 
 
 
4bdd7f2
 
313814b
4bdd7f2
313814b
 
db7bf9a
 
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16cb74
 
 
313814b
 
 
 
 
 
 
 
 
 
 
48ce933
 
 
 
 
db500b1
48ce933
e01d72d
48ce933
d16cb74
 
 
 
48ce933
 
 
 
 
 
 
 
e01d72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16cb74
48ce933
e01d72d
 
 
 
 
 
 
 
 
 
48ce933
 
4bdd7f2
 
313814b
 
4bdd7f2
 
db500b1
4bdd7f2
db500b1
4bdd7f2
 
 
 
 
e01d72d
4bdd7f2
d16cb74
 
 
 
e41bc7f
4bdd7f2
 
48ce933
4bdd7f2
 
 
 
e41bc7f
4bdd7f2
e01d72d
 
 
d16cb74
 
 
e01d72d
 
 
 
 
 
 
 
 
 
 
 
 
 
d16cb74
4bdd7f2
e01d72d
 
 
 
 
 
 
 
 
 
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f56267
 
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db7bf9a
 
 
313814b
db7bf9a
 
313814b
 
 
 
 
 
4bdd7f2
db500b1
4bdd7f2
d16cb74
 
 
4bdd7f2
 
 
 
 
 
 
 
313814b
d16cb74
 
 
 
313814b
4bdd7f2
 
 
 
 
 
 
 
313814b
 
 
 
 
 
 
 
 
 
8ad3023
313814b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from __future__ import annotations

import asyncio
import logging
import time
from contextlib import asynccontextmanager
from io import BytesIO
from typing import Annotated, Literal

from fastapi import (FastAPI, Form, Query, Response, UploadFile, WebSocket,
                     WebSocketDisconnect)
from fastapi.responses import StreamingResponse
from fastapi.websockets import WebSocketState
from faster_whisper import WhisperModel
from faster_whisper.vad import VadOptions, get_speech_timestamps

from speaches import utils
from speaches.asr import FasterWhisperASR
from speaches.audio import AudioStream, audio_samples_from_file
from speaches.config import SAMPLES_PER_SECOND, Language, Model, config
from speaches.core import Transcription
from speaches.logger import logger
from speaches.server_models import (ResponseFormat, TranscriptionJsonResponse,
                                    TranscriptionVerboseJsonResponse)
from speaches.transcriber import audio_transcriber

whisper: WhisperModel = None  # type: ignore


@asynccontextmanager
async def lifespan(_: FastAPI):
    global whisper
    logging.debug(f"Loading {config.whisper.model}")
    start = time.perf_counter()
    whisper = WhisperModel(
        config.whisper.model,
        device=config.whisper.inference_device,
        compute_type=config.whisper.compute_type,
    )
    logger.debug(
        f"Loaded {config.whisper.model} loaded in {time.perf_counter() - start:.2f} seconds"
    )
    yield


app = FastAPI(lifespan=lifespan)


@app.get("/health")
def health() -> Response:
    return Response(status_code=200, content="Everything is peachy!")


@app.post("/v1/audio/translations")
async def translate_file(
    file: Annotated[UploadFile, Form()],
    model: Annotated[Model, Form()] = config.whisper.model,
    prompt: Annotated[str | None, Form()] = None,
    response_format: Annotated[ResponseFormat, Form()] = config.default_response_format,
    temperature: Annotated[float, Form()] = 0.0,
    stream: Annotated[bool, Form()] = False,
):
    if model != config.whisper.model:
        logger.warning(
            f"Specifying a model that is different from the default is not supported yet. Using {config.whisper.model}."
        )
    start = time.perf_counter()
    segments, transcription_info = whisper.transcribe(
        file.file,
        task="translate",
        initial_prompt=prompt,
        temperature=temperature,
        vad_filter=True,
    )

    def segment_responses():
        for segment in segments:
            if response_format == ResponseFormat.TEXT:
                yield segment.text
            elif response_format == ResponseFormat.JSON:
                yield TranscriptionJsonResponse.from_segments(
                    [segment]
                ).model_dump_json()
            elif response_format == ResponseFormat.VERBOSE_JSON:
                yield TranscriptionVerboseJsonResponse.from_segment(
                    segment, transcription_info
                ).model_dump_json()

    if not stream:
        segments = list(segments)
        logger.info(
            f"Translated {transcription_info.duration}({transcription_info.duration_after_vad}) seconds of audio in {time.perf_counter() - start:.2f} seconds"
        )
        if response_format == ResponseFormat.TEXT:
            return utils.segments_text(segments)
        elif response_format == ResponseFormat.JSON:
            return TranscriptionJsonResponse.from_segments(segments)
        elif response_format == ResponseFormat.VERBOSE_JSON:
            return TranscriptionVerboseJsonResponse.from_segments(
                segments, transcription_info
            )
    else:
        return StreamingResponse(segment_responses(), media_type="text/event-stream")


# https://platform.openai.com/docs/api-reference/audio/createTranscription
# https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915
@app.post("/v1/audio/transcriptions")
async def transcribe_file(
    file: Annotated[UploadFile, Form()],
    model: Annotated[Model, Form()] = config.whisper.model,
    language: Annotated[Language | None, Form()] = config.default_language,
    prompt: Annotated[str | None, Form()] = None,
    response_format: Annotated[ResponseFormat, Form()] = config.default_response_format,
    temperature: Annotated[float, Form()] = 0.0,
    timestamp_granularities: Annotated[
        list[Literal["segments"] | Literal["words"]],
        Form(alias="timestamp_granularities[]"),
    ] = ["segments"],
    stream: Annotated[bool, Form()] = False,
):
    if model != config.whisper.model:
        logger.warning(
            f"Specifying a model that is different from the default is not supported yet. Using {config.whisper.model}."
        )
    start = time.perf_counter()
    segments, transcription_info = whisper.transcribe(
        file.file,
        task="transcribe",
        language=language,
        initial_prompt=prompt,
        word_timestamps="words" in timestamp_granularities,
        temperature=temperature,
        vad_filter=True,
    )

    def segment_responses():
        for segment in segments:
            logger.info(
                f"Transcribed {segment.end - segment.start} seconds of audio in {time.perf_counter() - start:.2f} seconds"
            )
            if response_format == ResponseFormat.TEXT:
                yield segment.text
            elif response_format == ResponseFormat.JSON:
                yield TranscriptionJsonResponse.from_segments(
                    [segment]
                ).model_dump_json()
            elif response_format == ResponseFormat.VERBOSE_JSON:
                yield TranscriptionVerboseJsonResponse.from_segment(
                    segment, transcription_info
                ).model_dump_json()

    if not stream:
        segments = list(segments)
        logger.info(
            f"Transcribed {transcription_info.duration}({transcription_info.duration_after_vad}) seconds of audio in {time.perf_counter() - start:.2f} seconds"
        )
        if response_format == ResponseFormat.TEXT:
            return utils.segments_text(segments)
        elif response_format == ResponseFormat.JSON:
            return TranscriptionJsonResponse.from_segments(segments)
        elif response_format == ResponseFormat.VERBOSE_JSON:
            return TranscriptionVerboseJsonResponse.from_segments(
                segments, transcription_info
            )
    else:
        return StreamingResponse(segment_responses(), media_type="text/event-stream")


async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
    try:
        while True:
            bytes_ = await asyncio.wait_for(
                ws.receive_bytes(), timeout=config.max_no_data_seconds
            )
            logger.debug(f"Received {len(bytes_)} bytes of audio data")
            audio_samples = audio_samples_from_file(BytesIO(bytes_))
            audio_stream.extend(audio_samples)
            if audio_stream.duration - config.inactivity_window_seconds >= 0:
                audio = audio_stream.after(
                    audio_stream.duration - config.inactivity_window_seconds
                )
                vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
                # NOTE: This is a synchronous operation that runs every time new data is received.
                # This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato.
                timestamps = get_speech_timestamps(audio.data, vad_opts)
                if len(timestamps) == 0:
                    logger.info(
                        f"No speech detected in the last {config.inactivity_window_seconds} seconds."
                    )
                    break
                elif (
                    # last speech end time
                    config.inactivity_window_seconds
                    - timestamps[-1]["end"] / SAMPLES_PER_SECOND
                    >= config.max_inactivity_seconds
                ):
                    logger.info(
                        f"Not enough speech in the last {config.inactivity_window_seconds} seconds."
                    )
                    break
    except asyncio.TimeoutError:
        logger.info(
            f"No data received in {config.max_no_data_seconds} seconds. Closing the connection."
        )
    except WebSocketDisconnect as e:
        logger.info(f"Client disconnected: {e}")
    audio_stream.close()


def format_transcription(
    transcription: Transcription, response_format: ResponseFormat
) -> str:
    if response_format == ResponseFormat.TEXT:
        return transcription.text
    elif response_format == ResponseFormat.JSON:
        return TranscriptionJsonResponse.from_transcription(
            transcription
        ).model_dump_json()
    elif response_format == ResponseFormat.VERBOSE_JSON:
        return TranscriptionVerboseJsonResponse.from_transcription(
            transcription
        ).model_dump_json()


@app.websocket("/v1/audio/transcriptions")
async def transcribe_stream(
    ws: WebSocket,
    model: Annotated[Model, Query()] = config.whisper.model,
    language: Annotated[Language | None, Query()] = config.default_language,
    prompt: Annotated[str | None, Query()] = None,
    response_format: Annotated[
        ResponseFormat, Query()
    ] = config.default_response_format,
    temperature: Annotated[float, Query()] = 0.0,
    timestamp_granularities: Annotated[
        list[Literal["segments"] | Literal["words"]],
        Query(
            alias="timestamp_granularities[]",
            description="No-op. Ignored. Only for compatibility.",
        ),
    ] = ["segments", "words"],
) -> None:
    if model != config.whisper.model:
        logger.warning(
            f"Specifying a model that is different from the default is not supported yet. Using {config.whisper.model}."
        )
    await ws.accept()
    transcribe_opts = {
        "language": language,
        "initial_prompt": prompt,
        "temperature": temperature,
        "vad_filter": True,
        "condition_on_previous_text": False,
    }
    asr = FasterWhisperASR(whisper, **transcribe_opts)
    audio_stream = AudioStream()
    async with asyncio.TaskGroup() as tg:
        tg.create_task(audio_receiver(ws, audio_stream))
        async for transcription in audio_transcriber(asr, audio_stream):
            logger.debug(f"Sending transcription: {transcription.text}")
            if ws.client_state == WebSocketState.DISCONNECTED:
                break
            await ws.send_text(format_transcription(transcription, response_format))

    if not ws.client_state == WebSocketState.DISCONNECTED:
        logger.info("Closing the connection.")
        await ws.close()