Spaces:
Configuration error
Configuration error
File size: 15,882 Bytes
313814b dc4f25f 3a14175 b20cbad 313814b dc4f25f 313814b d0feed8 f5b5ebf f3632d1 d0feed8 e0e6882 e01d72d 313814b dc4f25f f3632d1 313814b 39ee116 3e15f14 39ee116 323aa51 39ee116 5aa421e f5b5ebf d0feed8 39ee116 313814b dc4f25f 3a14175 dc4f25f 2a79f48 dc4f25f f5b5ebf 313814b c8f37a4 f5b5ebf aada575 f5b5ebf dc4f25f f5b5ebf c8f37a4 313814b 3a14175 313814b aada575 313814b 063ef89 313814b 063ef89 313814b aada575 dc4f25f d16cb74 f5b5ebf aada575 65e955b 3a14175 313814b e0e6882 9d4a9a2 e0e6882 9d4a9a2 313814b 39ee116 313814b b20cbad f3632d1 5aa421e 2afe55d c0a38da 2afe55d f5b5ebf 2afe55d f5b5ebf 2afe55d f5b5ebf f3632d1 9eed954 c0a38da 9c0d580 c0a38da f5b5ebf 487d997 f5b5ebf 2afe55d f5b5ebf 2afe55d f5b5ebf 14908c1 323aa51 14908c1 dc4f25f 323aa51 14908c1 323aa51 14908c1 323aa51 14908c1 8c12cdc 14908c1 323aa51 14908c1 dc4f25f 14908c1 dc4f25f 323aa51 14908c1 f3632d1 dc4f25f f3632d1 dc4f25f f3632d1 9eed954 aada575 48ce933 f3632d1 48ce933 db500b1 48ce933 e01d72d 323aa51 aada575 48ce933 79f1f8d 48ce933 2a79f48 e01d72d 14908c1 dc4f25f e01d72d 14908c1 48ce933 4bdd7f2 9eed954 aada575 4bdd7f2 f3632d1 db500b1 4bdd7f2 db500b1 4bdd7f2 dc4f25f 4bdd7f2 d9a6bd7 e01d72d f268aa3 323aa51 aada575 4bdd7f2 79f1f8d 4bdd7f2 d9a6bd7 4bdd7f2 e41bc7f f268aa3 4bdd7f2 2a79f48 e01d72d 14908c1 dc4f25f e01d72d 14908c1 313814b dc4f25f 313814b dc4f25f 313814b 9f56267 dc4f25f 313814b dc4f25f 313814b dc4f25f 313814b dc4f25f 313814b dc4f25f 313814b f3632d1 db500b1 dc4f25f 4bdd7f2 313814b 4bdd7f2 aada575 4bdd7f2 313814b aada575 dc4f25f aada575 dc4f25f 313814b dc4f25f 8ad3023 313814b 3e15f14 4e64465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
from __future__ import annotations
import asyncio
from collections import OrderedDict
from contextlib import asynccontextmanager
import gc
from io import BytesIO
import time
from typing import TYPE_CHECKING, Annotated, Literal
from fastapi import (
FastAPI,
Form,
HTTPException,
Path,
Query,
Response,
UploadFile,
WebSocket,
WebSocketDisconnect,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from fastapi.websockets import WebSocketState
from faster_whisper import WhisperModel
from faster_whisper.vad import VadOptions, get_speech_timestamps
import huggingface_hub
from pydantic import AfterValidator
from faster_whisper_server.asr import FasterWhisperASR
from faster_whisper_server.audio import AudioStream, audio_samples_from_file
from faster_whisper_server.config import (
SAMPLES_PER_SECOND,
Language,
ResponseFormat,
Task,
config,
)
from faster_whisper_server.core import Segment, segments_to_srt, segments_to_text, segments_to_vtt
from faster_whisper_server.logger import logger
from faster_whisper_server.server_models import (
ModelListResponse,
ModelObject,
TranscriptionJsonResponse,
TranscriptionVerboseJsonResponse,
)
from faster_whisper_server.transcriber import audio_transcriber
if TYPE_CHECKING:
from collections.abc import AsyncGenerator, Generator, Iterable
from faster_whisper.transcribe import TranscriptionInfo
from huggingface_hub.hf_api import ModelInfo
loaded_models: OrderedDict[str, WhisperModel] = OrderedDict()
def load_model(model_name: str) -> WhisperModel:
if model_name in loaded_models:
logger.debug(f"{model_name} model already loaded")
return loaded_models[model_name]
if len(loaded_models) >= config.max_models:
oldest_model_name = next(iter(loaded_models))
logger.info(f"Max models ({config.max_models}) reached. Unloading the oldest model: {oldest_model_name}")
del loaded_models[oldest_model_name]
logger.debug(f"Loading {model_name}...")
start = time.perf_counter()
# NOTE: will raise an exception if the model name isn't valid. Should I do an explicit check?
whisper = WhisperModel(
model_name,
device=config.whisper.inference_device,
device_index=config.whisper.device_index,
compute_type=config.whisper.compute_type,
cpu_threads=config.whisper.cpu_threads,
num_workers=config.whisper.num_workers,
)
logger.info(
f"Loaded {model_name} loaded in {time.perf_counter() - start:.2f} seconds. {config.whisper.inference_device}({config.whisper.compute_type}) will be used for inference." # noqa: E501
)
loaded_models[model_name] = whisper
return whisper
logger.debug(f"Config: {config}")
@asynccontextmanager
async def lifespan(_app: FastAPI) -> AsyncGenerator[None, None]:
for model_name in config.preload_models:
load_model(model_name)
yield
app = FastAPI(lifespan=lifespan)
if config.allow_origins is not None:
app.add_middleware(
CORSMiddleware,
allow_origins=config.allow_origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/health")
def health() -> Response:
return Response(status_code=200, content="OK")
@app.get("/api/ps", tags=["experimental"], summary="Get a list of loaded models.")
def get_running_models() -> dict[str, list[str]]:
return {"models": list(loaded_models.keys())}
@app.post("/api/ps/{model_name:path}", tags=["experimental"], summary="Load a model into memory.")
def load_model_route(model_name: str) -> Response:
if model_name in loaded_models:
return Response(status_code=409, content="Model already loaded")
load_model(model_name)
return Response(status_code=201)
@app.delete("/api/ps/{model_name:path}", tags=["experimental"], summary="Unload a model from memory.")
def stop_running_model(model_name: str) -> Response:
model = loaded_models.get(model_name)
if model is not None:
del loaded_models[model_name]
gc.collect()
return Response(status_code=204)
return Response(status_code=404)
@app.get("/v1/models")
def get_models() -> ModelListResponse:
models = huggingface_hub.list_models(library="ctranslate2", tags="automatic-speech-recognition", cardData=True)
models = list(models)
models.sort(key=lambda model: model.downloads, reverse=True)
transformed_models: list[ModelObject] = []
for model in models:
assert model.created_at is not None
assert model.card_data is not None
assert model.card_data.language is None or isinstance(model.card_data.language, str | list)
if model.card_data.language is None:
language = []
elif isinstance(model.card_data.language, str):
language = [model.card_data.language]
else:
language = model.card_data.language
transformed_model = ModelObject(
id=model.id,
created=int(model.created_at.timestamp()),
object_="model",
owned_by=model.id.split("/")[0],
language=language,
)
transformed_models.append(transformed_model)
return ModelListResponse(data=transformed_models)
@app.get("/v1/models/{model_name:path}")
# NOTE: `examples` doesn't work https://github.com/tiangolo/fastapi/discussions/10537
def get_model(
model_name: Annotated[str, Path(example="Systran/faster-distil-whisper-large-v3")],
) -> ModelObject:
models = huggingface_hub.list_models(
model_name=model_name, library="ctranslate2", tags="automatic-speech-recognition", cardData=True
)
models = list(models)
models.sort(key=lambda model: model.downloads, reverse=True)
if len(models) == 0:
raise HTTPException(status_code=404, detail="Model doesn't exists")
exact_match: ModelInfo | None = None
for model in models:
if model.id == model_name:
exact_match = model
break
if exact_match is None:
raise HTTPException(
status_code=404,
detail=f"Model doesn't exists. Possible matches: {', '.join([model.id for model in models])}",
)
assert exact_match.created_at is not None
assert exact_match.card_data is not None
assert exact_match.card_data.language is None or isinstance(exact_match.card_data.language, str | list)
if exact_match.card_data.language is None:
language = []
elif isinstance(exact_match.card_data.language, str):
language = [exact_match.card_data.language]
else:
language = exact_match.card_data.language
return ModelObject(
id=exact_match.id,
created=int(exact_match.created_at.timestamp()),
object_="model",
owned_by=exact_match.id.split("/")[0],
language=language,
)
def segments_to_response(
segments: Iterable[Segment],
transcription_info: TranscriptionInfo,
response_format: ResponseFormat,
) -> Response:
segments = list(segments)
if response_format == ResponseFormat.TEXT: # noqa: RET503
return Response(segments_to_text(segments), media_type="text/plain")
elif response_format == ResponseFormat.JSON:
return Response(
TranscriptionJsonResponse.from_segments(segments).model_dump_json(),
media_type="application/json",
)
elif response_format == ResponseFormat.VERBOSE_JSON:
return Response(
TranscriptionVerboseJsonResponse.from_segments(segments, transcription_info).model_dump_json(),
media_type="application/json",
)
elif response_format == ResponseFormat.VTT:
return Response(
"".join(segments_to_vtt(segment, i) for i, segment in enumerate(segments)), media_type="text/vtt"
)
elif response_format == ResponseFormat.SRT:
return Response(
"".join(segments_to_srt(segment, i) for i, segment in enumerate(segments)), media_type="text/plain"
)
def format_as_sse(data: str) -> str:
return f"data: {data}\n\n"
def segments_to_streaming_response(
segments: Iterable[Segment],
transcription_info: TranscriptionInfo,
response_format: ResponseFormat,
) -> StreamingResponse:
def segment_responses() -> Generator[str, None, None]:
for i, segment in enumerate(segments):
if response_format == ResponseFormat.TEXT:
data = segment.text
elif response_format == ResponseFormat.JSON:
data = TranscriptionJsonResponse.from_segments([segment]).model_dump_json()
elif response_format == ResponseFormat.VERBOSE_JSON:
data = TranscriptionVerboseJsonResponse.from_segment(segment, transcription_info).model_dump_json()
elif response_format == ResponseFormat.VTT:
data = segments_to_vtt(segment, i)
elif response_format == ResponseFormat.SRT:
data = segments_to_srt(segment, i)
yield format_as_sse(data)
return StreamingResponse(segment_responses(), media_type="text/event-stream")
def handle_default_openai_model(model_name: str) -> str:
"""Exists because some callers may not be able override the default("whisper-1") model name.
For example, https://github.com/open-webui/open-webui/issues/2248#issuecomment-2162997623.
"""
if model_name == "whisper-1":
logger.info(f"{model_name} is not a valid model name. Using {config.whisper.model} instead.")
return config.whisper.model
return model_name
ModelName = Annotated[str, AfterValidator(handle_default_openai_model)]
@app.post(
"/v1/audio/translations",
response_model=str | TranscriptionJsonResponse | TranscriptionVerboseJsonResponse,
)
def translate_file(
file: Annotated[UploadFile, Form()],
model: Annotated[ModelName, Form()] = config.whisper.model,
prompt: Annotated[str | None, Form()] = None,
response_format: Annotated[ResponseFormat, Form()] = config.default_response_format,
temperature: Annotated[float, Form()] = 0.0,
stream: Annotated[bool, Form()] = False,
) -> Response | StreamingResponse:
whisper = load_model(model)
segments, transcription_info = whisper.transcribe(
file.file,
task=Task.TRANSLATE,
initial_prompt=prompt,
temperature=temperature,
vad_filter=True,
)
segments = Segment.from_faster_whisper_segments(segments)
if stream:
return segments_to_streaming_response(segments, transcription_info, response_format)
else:
return segments_to_response(segments, transcription_info, response_format)
# https://platform.openai.com/docs/api-reference/audio/createTranscription
# https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915
@app.post(
"/v1/audio/transcriptions",
response_model=str | TranscriptionJsonResponse | TranscriptionVerboseJsonResponse,
)
def transcribe_file(
file: Annotated[UploadFile, Form()],
model: Annotated[ModelName, Form()] = config.whisper.model,
language: Annotated[Language | None, Form()] = config.default_language,
prompt: Annotated[str | None, Form()] = None,
response_format: Annotated[ResponseFormat, Form()] = config.default_response_format,
temperature: Annotated[float, Form()] = 0.0,
timestamp_granularities: Annotated[
list[Literal["segment", "word"]],
Form(alias="timestamp_granularities[]"),
] = ["segment"],
stream: Annotated[bool, Form()] = False,
hotwords: Annotated[str | None, Form()] = None,
) -> Response | StreamingResponse:
whisper = load_model(model)
segments, transcription_info = whisper.transcribe(
file.file,
task=Task.TRANSCRIBE,
language=language,
initial_prompt=prompt,
word_timestamps="word" in timestamp_granularities,
temperature=temperature,
vad_filter=True,
hotwords=hotwords,
)
segments = Segment.from_faster_whisper_segments(segments)
if stream:
return segments_to_streaming_response(segments, transcription_info, response_format)
else:
return segments_to_response(segments, transcription_info, response_format)
async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
try:
while True:
bytes_ = await asyncio.wait_for(ws.receive_bytes(), timeout=config.max_no_data_seconds)
logger.debug(f"Received {len(bytes_)} bytes of audio data")
audio_samples = audio_samples_from_file(BytesIO(bytes_))
audio_stream.extend(audio_samples)
if audio_stream.duration - config.inactivity_window_seconds >= 0:
audio = audio_stream.after(audio_stream.duration - config.inactivity_window_seconds)
vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
# NOTE: This is a synchronous operation that runs every time new data is received.
# This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato. # noqa: E501
timestamps = get_speech_timestamps(audio.data, vad_opts)
if len(timestamps) == 0:
logger.info(f"No speech detected in the last {config.inactivity_window_seconds} seconds.")
break
elif (
# last speech end time
config.inactivity_window_seconds - timestamps[-1]["end"] / SAMPLES_PER_SECOND
>= config.max_inactivity_seconds
):
logger.info(f"Not enough speech in the last {config.inactivity_window_seconds} seconds.")
break
except TimeoutError:
logger.info(f"No data received in {config.max_no_data_seconds} seconds. Closing the connection.")
except WebSocketDisconnect as e:
logger.info(f"Client disconnected: {e}")
audio_stream.close()
@app.websocket("/v1/audio/transcriptions")
async def transcribe_stream(
ws: WebSocket,
model: Annotated[ModelName, Query()] = config.whisper.model,
language: Annotated[Language | None, Query()] = config.default_language,
response_format: Annotated[ResponseFormat, Query()] = config.default_response_format,
temperature: Annotated[float, Query()] = 0.0,
) -> None:
await ws.accept()
transcribe_opts = {
"language": language,
"temperature": temperature,
"vad_filter": True,
"condition_on_previous_text": False,
}
whisper = load_model(model)
asr = FasterWhisperASR(whisper, **transcribe_opts)
audio_stream = AudioStream()
async with asyncio.TaskGroup() as tg:
tg.create_task(audio_receiver(ws, audio_stream))
async for transcription in audio_transcriber(asr, audio_stream):
logger.debug(f"Sending transcription: {transcription.text}")
if ws.client_state == WebSocketState.DISCONNECTED:
break
if response_format == ResponseFormat.TEXT:
await ws.send_text(transcription.text)
elif response_format == ResponseFormat.JSON:
await ws.send_json(TranscriptionJsonResponse.from_transcription(transcription).model_dump())
elif response_format == ResponseFormat.VERBOSE_JSON:
await ws.send_json(TranscriptionVerboseJsonResponse.from_transcription(transcription).model_dump())
if ws.client_state != WebSocketState.DISCONNECTED:
logger.info("Closing the connection.")
await ws.close()
if config.enable_ui:
import gradio as gr
from faster_whisper_server.gradio_app import create_gradio_demo
app = gr.mount_gradio_app(app, create_gradio_demo(config), path="/")
|