Spaces:
Configuration error
Configuration error
File size: 12,985 Bytes
8f3dcc9 bf48682 a5d2e48 8f3dcc9 ed63b7d 8f3dcc9 6eabeb2 bf48682 ec4d8ae 8f3dcc9 bf48682 ec4d8ae 8f3dcc9 bf48682 8f3dcc9 ec4d8ae 8f3dcc9 42343e0 8f3dcc9 ec4d8ae 8f3dcc9 ec4d8ae 8f3dcc9 ec4d8ae 8f3dcc9 bf48682 8f3dcc9 6eabeb2 8f3dcc9 ec4d8ae 8f3dcc9 bf48682 8f3dcc9 bf48682 8f3dcc9 bf48682 8f3dcc9 1de8d65 8f3dcc9 bf48682 35eafc3 8f3dcc9 ed63b7d 8f3dcc9 ec4d8ae 8f3dcc9 bf48682 ed63b7d 8f3dcc9 bf48682 8f3dcc9 bf48682 8f3dcc9 a5d2e48 ed63b7d 8f3dcc9 1de8d65 8f3dcc9 bf48682 ed63b7d 35eafc3 8f3dcc9 bf48682 8f3dcc9 bf48682 8f3dcc9 bf48682 8f3dcc9 1de8d65 8f3dcc9 bf48682 8f3dcc9 1de8d65 8f3dcc9 35eafc3 8f3dcc9 35eafc3 8f3dcc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from __future__ import annotations
import asyncio
from io import BytesIO
import logging
from typing import TYPE_CHECKING, Annotated
from fastapi import (
APIRouter,
Form,
Query,
Request,
Response,
UploadFile,
WebSocket,
WebSocketDisconnect,
)
from fastapi.responses import StreamingResponse
from fastapi.websockets import WebSocketState
from faster_whisper.vad import VadOptions, get_speech_timestamps
from pydantic import AfterValidator, Field
from faster_whisper_server.api_models import (
DEFAULT_TIMESTAMP_GRANULARITIES,
TIMESTAMP_GRANULARITIES_COMBINATIONS,
CreateTranscriptionResponseJson,
CreateTranscriptionResponseVerboseJson,
TimestampGranularities,
TranscriptionSegment,
)
from faster_whisper_server.asr import FasterWhisperASR
from faster_whisper_server.audio import AudioStream, audio_samples_from_file
from faster_whisper_server.config import (
SAMPLES_PER_SECOND,
Language,
ResponseFormat,
Task,
)
from faster_whisper_server.dependencies import ConfigDependency, ModelManagerDependency, get_config
from faster_whisper_server.text_utils import segments_to_srt, segments_to_text, segments_to_vtt
from faster_whisper_server.transcriber import audio_transcriber
if TYPE_CHECKING:
from collections.abc import Generator, Iterable
from faster_whisper.transcribe import TranscriptionInfo
logger = logging.getLogger(__name__)
router = APIRouter()
def segments_to_response(
segments: Iterable[TranscriptionSegment],
transcription_info: TranscriptionInfo,
response_format: ResponseFormat,
) -> Response:
segments = list(segments)
match response_format:
case ResponseFormat.TEXT:
return Response(segments_to_text(segments), media_type="text/plain")
case ResponseFormat.JSON:
return Response(
CreateTranscriptionResponseJson.from_segments(segments).model_dump_json(),
media_type="application/json",
)
case ResponseFormat.VERBOSE_JSON:
return Response(
CreateTranscriptionResponseVerboseJson.from_segments(segments, transcription_info).model_dump_json(),
media_type="application/json",
)
case ResponseFormat.VTT:
return Response(
"".join(segments_to_vtt(segment, i) for i, segment in enumerate(segments)), media_type="text/vtt"
)
case ResponseFormat.SRT:
return Response(
"".join(segments_to_srt(segment, i) for i, segment in enumerate(segments)), media_type="text/plain"
)
def format_as_sse(data: str) -> str:
return f"data: {data}\n\n"
def segments_to_streaming_response(
segments: Iterable[TranscriptionSegment],
transcription_info: TranscriptionInfo,
response_format: ResponseFormat,
) -> StreamingResponse:
def segment_responses() -> Generator[str, None, None]:
for i, segment in enumerate(segments):
if response_format == ResponseFormat.TEXT:
data = segment.text
elif response_format == ResponseFormat.JSON:
data = CreateTranscriptionResponseJson.from_segments([segment]).model_dump_json()
elif response_format == ResponseFormat.VERBOSE_JSON:
data = CreateTranscriptionResponseVerboseJson.from_segment(
segment, transcription_info
).model_dump_json()
elif response_format == ResponseFormat.VTT:
data = segments_to_vtt(segment, i)
elif response_format == ResponseFormat.SRT:
data = segments_to_srt(segment, i)
yield format_as_sse(data)
return StreamingResponse(segment_responses(), media_type="text/event-stream")
def handle_default_openai_model(model_name: str) -> str:
"""Exists because some callers may not be able override the default("whisper-1") model name.
For example, https://github.com/open-webui/open-webui/issues/2248#issuecomment-2162997623.
"""
config = get_config() # HACK
if model_name == "whisper-1":
logger.info(f"{model_name} is not a valid model name. Using {config.whisper.model} instead.")
return config.whisper.model
return model_name
ModelName = Annotated[
str,
AfterValidator(handle_default_openai_model),
Field(
description="The ID of the model. You can get a list of available models by calling `/v1/models`.",
examples=[
"Systran/faster-distil-whisper-large-v3",
"bofenghuang/whisper-large-v2-cv11-french-ct2",
],
),
]
@router.post(
"/v1/audio/translations",
response_model=str | CreateTranscriptionResponseJson | CreateTranscriptionResponseVerboseJson,
)
def translate_file(
config: ConfigDependency,
model_manager: ModelManagerDependency,
file: Annotated[UploadFile, Form()],
model: Annotated[ModelName | None, Form()] = None,
prompt: Annotated[str | None, Form()] = None,
response_format: Annotated[ResponseFormat | None, Form()] = None,
temperature: Annotated[float, Form()] = 0.0,
stream: Annotated[bool, Form()] = False,
vad_filter: Annotated[bool, Form()] = False,
) -> Response | StreamingResponse:
if model is None:
model = config.whisper.model
if response_format is None:
response_format = config.default_response_format
with model_manager.load_model(model) as whisper:
segments, transcription_info = whisper.transcribe(
file.file,
task=Task.TRANSLATE,
initial_prompt=prompt,
temperature=temperature,
vad_filter=vad_filter,
)
segments = TranscriptionSegment.from_faster_whisper_segments(segments)
if stream:
return segments_to_streaming_response(segments, transcription_info, response_format)
else:
return segments_to_response(segments, transcription_info, response_format)
# HACK: Since Form() doesn't support `alias`, we need to use a workaround.
async def get_timestamp_granularities(request: Request) -> TimestampGranularities:
form = await request.form()
if form.get("timestamp_granularities[]") is None:
return DEFAULT_TIMESTAMP_GRANULARITIES
timestamp_granularities = form.getlist("timestamp_granularities[]")
assert (
timestamp_granularities in TIMESTAMP_GRANULARITIES_COMBINATIONS
), f"{timestamp_granularities} is not a valid value for `timestamp_granularities[]`."
return timestamp_granularities
# https://platform.openai.com/docs/api-reference/audio/createTranscription
# https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915
@router.post(
"/v1/audio/transcriptions",
response_model=str | CreateTranscriptionResponseJson | CreateTranscriptionResponseVerboseJson,
)
def transcribe_file(
config: ConfigDependency,
model_manager: ModelManagerDependency,
request: Request,
file: Annotated[UploadFile, Form()],
model: Annotated[ModelName | None, Form()] = None,
language: Annotated[Language | None, Form()] = None,
prompt: Annotated[str | None, Form()] = None,
response_format: Annotated[ResponseFormat | None, Form()] = None,
temperature: Annotated[float, Form()] = 0.0,
timestamp_granularities: Annotated[
TimestampGranularities,
# WARN: `alias` doesn't actually work.
Form(alias="timestamp_granularities[]"),
] = ["segment"],
stream: Annotated[bool, Form()] = False,
hotwords: Annotated[str | None, Form()] = None,
vad_filter: Annotated[bool, Form()] = False,
) -> Response | StreamingResponse:
if model is None:
model = config.whisper.model
if language is None:
language = config.default_language
if response_format is None:
response_format = config.default_response_format
timestamp_granularities = asyncio.run(get_timestamp_granularities(request))
if timestamp_granularities != DEFAULT_TIMESTAMP_GRANULARITIES and response_format != ResponseFormat.VERBOSE_JSON:
logger.warning(
"It only makes sense to provide `timestamp_granularities[]` when `response_format` is set to `verbose_json`. See https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-timestamp_granularities." # noqa: E501
)
with model_manager.load_model(model) as whisper:
segments, transcription_info = whisper.transcribe(
file.file,
task=Task.TRANSCRIBE,
language=language,
initial_prompt=prompt,
word_timestamps="word" in timestamp_granularities,
temperature=temperature,
vad_filter=vad_filter,
hotwords=hotwords,
)
segments = TranscriptionSegment.from_faster_whisper_segments(segments)
if stream:
return segments_to_streaming_response(segments, transcription_info, response_format)
else:
return segments_to_response(segments, transcription_info, response_format)
async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
config = get_config() # HACK
try:
while True:
bytes_ = await asyncio.wait_for(ws.receive_bytes(), timeout=config.max_no_data_seconds)
logger.debug(f"Received {len(bytes_)} bytes of audio data")
audio_samples = audio_samples_from_file(BytesIO(bytes_))
audio_stream.extend(audio_samples)
if audio_stream.duration - config.inactivity_window_seconds >= 0:
audio = audio_stream.after(audio_stream.duration - config.inactivity_window_seconds)
vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
# NOTE: This is a synchronous operation that runs every time new data is received.
# This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato. # noqa: E501
timestamps = get_speech_timestamps(audio.data, vad_opts)
if len(timestamps) == 0:
logger.info(f"No speech detected in the last {config.inactivity_window_seconds} seconds.")
break
elif (
# last speech end time
config.inactivity_window_seconds - timestamps[-1]["end"] / SAMPLES_PER_SECOND
>= config.max_inactivity_seconds
):
logger.info(f"Not enough speech in the last {config.inactivity_window_seconds} seconds.")
break
except TimeoutError:
logger.info(f"No data received in {config.max_no_data_seconds} seconds. Closing the connection.")
except WebSocketDisconnect as e:
logger.info(f"Client disconnected: {e}")
audio_stream.close()
@router.websocket("/v1/audio/transcriptions")
async def transcribe_stream(
config: ConfigDependency,
model_manager: ModelManagerDependency,
ws: WebSocket,
model: Annotated[ModelName | None, Query()] = None,
language: Annotated[Language | None, Query()] = None,
response_format: Annotated[ResponseFormat | None, Query()] = None,
temperature: Annotated[float, Query()] = 0.0,
vad_filter: Annotated[bool, Query()] = False,
) -> None:
if model is None:
model = config.whisper.model
if language is None:
language = config.default_language
if response_format is None:
response_format = config.default_response_format
await ws.accept()
transcribe_opts = {
"language": language,
"temperature": temperature,
"vad_filter": vad_filter,
"condition_on_previous_text": False,
}
with model_manager.load_model(model) as whisper:
asr = FasterWhisperASR(whisper, **transcribe_opts)
audio_stream = AudioStream()
async with asyncio.TaskGroup() as tg:
tg.create_task(audio_receiver(ws, audio_stream))
async for transcription in audio_transcriber(asr, audio_stream, min_duration=config.min_duration):
logger.debug(f"Sending transcription: {transcription.text}")
if ws.client_state == WebSocketState.DISCONNECTED:
break
if response_format == ResponseFormat.TEXT:
await ws.send_text(transcription.text)
elif response_format == ResponseFormat.JSON:
await ws.send_json(CreateTranscriptionResponseJson.from_transcription(transcription).model_dump())
elif response_format == ResponseFormat.VERBOSE_JSON:
await ws.send_json(
CreateTranscriptionResponseVerboseJson.from_transcription(transcription).model_dump()
)
if ws.client_state != WebSocketState.DISCONNECTED:
logger.info("Closing the connection.")
await ws.close()
|