Spaces:
Configuration error
Configuration error
File size: 4,558 Bytes
313814b 5741d7c 8ad3023 313814b 9f56267 313814b aada575 313814b aada575 313814b aada575 313814b 9f56267 313814b aada575 9f56267 aada575 9f56267 aada575 313814b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import enum
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings, SettingsConfigDict
SAMPLES_PER_SECOND = 16000
BYTES_PER_SAMPLE = 2
BYTES_PER_SECOND = SAMPLES_PER_SECOND * BYTES_PER_SAMPLE
# 2 BYTES = 16 BITS = 1 SAMPLE
# 1 SECOND OF AUDIO = 32000 BYTES = 16000 SAMPLES
# https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-response_format
class ResponseFormat(enum.StrEnum):
TEXT = "text"
JSON = "json"
VERBOSE_JSON = "verbose_json"
# VTT = "vtt"
# SRT = "srt"
# https://huggingface.co/Systran
class Model(enum.StrEnum):
TINY_EN = "tiny.en"
TINY = "tiny"
BASE_EN = "base.en"
BASE = "base"
SMALL_EN = "small.en"
SMALL = "small"
MEDIUM_EN = "medium.en"
MEDIUM = "medium"
LARGE = "large"
LARGE_V1 = "large-v1"
LARGE_V2 = "large-v2"
LARGE_V3 = "large-v3"
DISTIL_SMALL_EN = "distil-small.en"
DISTIL_MEDIUM_EN = "distil-medium.en"
DISTIL_LARGE_V2 = "distil-large-v2"
DISTIL_LARGE_V3 = "distil-large-v3"
class Device(enum.StrEnum):
CPU = "cpu"
CUDA = "cuda"
AUTO = "auto"
# https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md
# NOTE: `Precision` might be a better name
class Quantization(enum.StrEnum):
INT8 = "int8"
INT8_FLOAT16 = "int8_float16"
INT8_BFLOAT16 = "int8_bfloat16"
INT8_FLOAT32 = "int8_float32"
INT16 = "int16"
FLOAT16 = "float16"
BFLOAT16 = "bfloat16"
FLOAT32 = "float32"
DEFAULT = "default"
class Language(enum.StrEnum):
AF = "af"
AM = "am"
AR = "ar"
AS = "as"
AZ = "az"
BA = "ba"
BE = "be"
BG = "bg"
BN = "bn"
BO = "bo"
BR = "br"
BS = "bs"
CA = "ca"
CS = "cs"
CY = "cy"
DA = "da"
DE = "de"
EL = "el"
EN = "en"
ES = "es"
ET = "et"
EU = "eu"
FA = "fa"
FI = "fi"
FO = "fo"
FR = "fr"
GL = "gl"
GU = "gu"
HA = "ha"
HAW = "haw"
HE = "he"
HI = "hi"
HR = "hr"
HT = "ht"
HU = "hu"
HY = "hy"
ID = "id"
IS = "is"
IT = "it"
JA = "ja"
JW = "jw"
KA = "ka"
KK = "kk"
KM = "km"
KN = "kn"
KO = "ko"
LA = "la"
LB = "lb"
LN = "ln"
LO = "lo"
LT = "lt"
LV = "lv"
MG = "mg"
MI = "mi"
MK = "mk"
ML = "ml"
MN = "mn"
MR = "mr"
MS = "ms"
MT = "mt"
MY = "my"
NE = "ne"
NL = "nl"
NN = "nn"
NO = "no"
OC = "oc"
PA = "pa"
PL = "pl"
PS = "ps"
PT = "pt"
RO = "ro"
RU = "ru"
SA = "sa"
SD = "sd"
SI = "si"
SK = "sk"
SL = "sl"
SN = "sn"
SO = "so"
SQ = "sq"
SR = "sr"
SU = "su"
SV = "sv"
SW = "sw"
TA = "ta"
TE = "te"
TG = "tg"
TH = "th"
TK = "tk"
TL = "tl"
TR = "tr"
TT = "tt"
UK = "uk"
UR = "ur"
UZ = "uz"
VI = "vi"
YI = "yi"
YO = "yo"
YUE = "yue"
ZH = "zh"
class WhisperConfig(BaseModel):
model: Model = Field(default=Model.DISTIL_MEDIUM_EN)
inference_device: Device = Field(default=Device.AUTO)
compute_type: Quantization = Field(default=Quantization.DEFAULT)
class Config(BaseSettings):
"""
Configuration for the application. Values can be set via environment variables.
Pydantic will automatically handle mapping uppercased environment variables to the corresponding fields.
To populate nested, the environment should be prefixed with the nested field name and an underscore. For example,
the environment variable `LOG_LEVEL` will be mapped to `log_level`, `WHISPER_MODEL` to `whisper.model`, etc.
"""
model_config = SettingsConfigDict(env_nested_delimiter="_")
log_level: str = "info"
default_language: Language | None = None
default_response_format: ResponseFormat = ResponseFormat.JSON
whisper: WhisperConfig = WhisperConfig()
max_models: int = 1
"""
Max duration to for the next audio chunk before transcription is finilized and connection is closed.
"""
max_no_data_seconds: float = 1.0
min_duration: float = 1.0
word_timestamp_error_margin: float = 0.2
"""
Max allowed audio duration without any speech being detected before transcription is finilized and connection is closed.
"""
max_inactivity_seconds: float = 2.0
"""
Controls how many latest seconds of audio are being passed through VAD.
Should be greater than `max_inactivity_seconds`
"""
inactivity_window_seconds: float = 3.0
config = Config()
|