File size: 4,558 Bytes
313814b
 
 
 
 
 
 
 
 
 
 
 
5741d7c
 
 
 
 
 
 
 
 
8ad3023
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f56267
313814b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aada575
 
 
313814b
 
 
aada575
 
 
 
 
 
 
313814b
 
aada575
 
 
 
 
313814b
9f56267
313814b
aada575
 
 
9f56267
 
 
aada575
9f56267
 
 
 
aada575
313814b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import enum

from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings, SettingsConfigDict

SAMPLES_PER_SECOND = 16000
BYTES_PER_SAMPLE = 2
BYTES_PER_SECOND = SAMPLES_PER_SECOND * BYTES_PER_SAMPLE
# 2 BYTES = 16 BITS = 1 SAMPLE
# 1 SECOND OF AUDIO = 32000 BYTES = 16000 SAMPLES


# https://platform.openai.com/docs/api-reference/audio/createTranscription#audio-createtranscription-response_format
class ResponseFormat(enum.StrEnum):
    TEXT = "text"
    JSON = "json"
    VERBOSE_JSON = "verbose_json"
    # VTT = "vtt"
    # SRT = "srt"


# https://huggingface.co/Systran
class Model(enum.StrEnum):
    TINY_EN = "tiny.en"
    TINY = "tiny"
    BASE_EN = "base.en"
    BASE = "base"
    SMALL_EN = "small.en"
    SMALL = "small"
    MEDIUM_EN = "medium.en"
    MEDIUM = "medium"
    LARGE = "large"
    LARGE_V1 = "large-v1"
    LARGE_V2 = "large-v2"
    LARGE_V3 = "large-v3"
    DISTIL_SMALL_EN = "distil-small.en"
    DISTIL_MEDIUM_EN = "distil-medium.en"
    DISTIL_LARGE_V2 = "distil-large-v2"
    DISTIL_LARGE_V3 = "distil-large-v3"


class Device(enum.StrEnum):
    CPU = "cpu"
    CUDA = "cuda"
    AUTO = "auto"


# https://github.com/OpenNMT/CTranslate2/blob/master/docs/quantization.md
# NOTE: `Precision` might be a better name
class Quantization(enum.StrEnum):
    INT8 = "int8"
    INT8_FLOAT16 = "int8_float16"
    INT8_BFLOAT16 = "int8_bfloat16"
    INT8_FLOAT32 = "int8_float32"
    INT16 = "int16"
    FLOAT16 = "float16"
    BFLOAT16 = "bfloat16"
    FLOAT32 = "float32"
    DEFAULT = "default"


class Language(enum.StrEnum):
    AF = "af"
    AM = "am"
    AR = "ar"
    AS = "as"
    AZ = "az"
    BA = "ba"
    BE = "be"
    BG = "bg"
    BN = "bn"
    BO = "bo"
    BR = "br"
    BS = "bs"
    CA = "ca"
    CS = "cs"
    CY = "cy"
    DA = "da"
    DE = "de"
    EL = "el"
    EN = "en"
    ES = "es"
    ET = "et"
    EU = "eu"
    FA = "fa"
    FI = "fi"
    FO = "fo"
    FR = "fr"
    GL = "gl"
    GU = "gu"
    HA = "ha"
    HAW = "haw"
    HE = "he"
    HI = "hi"
    HR = "hr"
    HT = "ht"
    HU = "hu"
    HY = "hy"
    ID = "id"
    IS = "is"
    IT = "it"
    JA = "ja"
    JW = "jw"
    KA = "ka"
    KK = "kk"
    KM = "km"
    KN = "kn"
    KO = "ko"
    LA = "la"
    LB = "lb"
    LN = "ln"
    LO = "lo"
    LT = "lt"
    LV = "lv"
    MG = "mg"
    MI = "mi"
    MK = "mk"
    ML = "ml"
    MN = "mn"
    MR = "mr"
    MS = "ms"
    MT = "mt"
    MY = "my"
    NE = "ne"
    NL = "nl"
    NN = "nn"
    NO = "no"
    OC = "oc"
    PA = "pa"
    PL = "pl"
    PS = "ps"
    PT = "pt"
    RO = "ro"
    RU = "ru"
    SA = "sa"
    SD = "sd"
    SI = "si"
    SK = "sk"
    SL = "sl"
    SN = "sn"
    SO = "so"
    SQ = "sq"
    SR = "sr"
    SU = "su"
    SV = "sv"
    SW = "sw"
    TA = "ta"
    TE = "te"
    TG = "tg"
    TH = "th"
    TK = "tk"
    TL = "tl"
    TR = "tr"
    TT = "tt"
    UK = "uk"
    UR = "ur"
    UZ = "uz"
    VI = "vi"
    YI = "yi"
    YO = "yo"
    YUE = "yue"
    ZH = "zh"


class WhisperConfig(BaseModel):
    model: Model = Field(default=Model.DISTIL_MEDIUM_EN)
    inference_device: Device = Field(default=Device.AUTO)
    compute_type: Quantization = Field(default=Quantization.DEFAULT)


class Config(BaseSettings):
    """
    Configuration for the application. Values can be set via environment variables.
    Pydantic will automatically handle mapping uppercased environment variables to the corresponding fields.
    To populate nested, the environment should be prefixed with the nested field name and an underscore. For example,
    the environment variable `LOG_LEVEL` will be mapped to `log_level`, `WHISPER_MODEL` to `whisper.model`, etc.
    """

    model_config = SettingsConfigDict(env_nested_delimiter="_")

    log_level: str = "info"
    default_language: Language | None = None
    default_response_format: ResponseFormat = ResponseFormat.JSON
    whisper: WhisperConfig = WhisperConfig()
    max_models: int = 1
    """
    Max duration to for the next audio chunk before transcription is finilized and connection is closed.
    """
    max_no_data_seconds: float = 1.0
    min_duration: float = 1.0
    word_timestamp_error_margin: float = 0.2
    """
    Max allowed audio duration without any speech being detected before transcription is finilized and connection is closed.
    """
    max_inactivity_seconds: float = 2.0
    """
    Controls how many latest seconds of audio are being passed through VAD.
    Should be greater than `max_inactivity_seconds`
    """
    inactivity_window_seconds: float = 3.0


config = Config()