#!/bin/bash #SBATCH --job-name=afqmc-bart-base # create a short name for your job #SBATCH --nodes=1 # node count #SBATCH --ntasks=2 # total number of tasks across all nodes #SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH --gres=gpu:2 # number of gpus per node #SBATCH --mail-type=ALL # send email when job begins, ends or failed etc. #SBATCH -o %x-%j.log # output and error file name (%x=job name, %j=job id) export TORCH_EXTENSIONS_DIR=/cognitive_comp/ganruyi/tmp/torch_extendsions MODEL_NAME=fengshen-zen1 TASK=afqmc TEXTA_NAME=sentence1 TEXTB_NAME=sentence2 LABEL_NAME=label ID_NAME=id BATCH_SIZE=8 VAL_BATCH_SIZE=32 ZERO_STAGE=1 STRATEGY=deepspeed_stage_${ZERO_STAGE} ROOT_DIR=/cognitive_comp/ganruyi/experiments/classification_finetune/${MODEL_NAME}_${TASK} if [ ! -d ${ROOT_DIR} ];then mkdir -p ${ROOT_DIR} echo ${ROOT_DIR} created!!!!!!!!!!!!!! else echo ${ROOT_DIR} exist!!!!!!!!!!!!!!! fi DATA_DIR=/cognitive_comp/yangping/data/ChineseCLUE_DATA/${TASK}_public/ PRETRAINED_MODEL_PATH=/cognitive_comp/ganruyi/hf_models/zen/ZEN_pretrain_base_v0.1.0 CHECKPOINT_PATH=${ROOT_DIR}/ckpt/ OUTPUT_PATH=${ROOT_DIR}/predict.json config_json="${ROOT_DIR}/ds_config.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() # reduce_bucket_size: hidden_size*hidden_size # stage3_prefetch_bucket_size: 0.9 * hidden_size * hidden_size # stage3_param_persistence_threshold: 10 * hidden_size cat < $config_json { "train_micro_batch_size_per_gpu": $BATCH_SIZE, "steps_per_print": 100, "gradient_clipping": 0.1, "zero_optimization": { "stage": ${ZERO_STAGE} }, "optimizer": { "type": "Adam", "params": { "lr": 1e-7, "eps": 1e-12, "weight_decay": 1e-2 } }, "scheduler": { "type": "WarmupLR", "params":{ "warmup_min_lr": 1e-5, "warmup_max_lr": 1e-4, "warmup_num_steps": 400, "warmup_type": "linear" } }, "zero_allow_untested_optimizer": false, "fp16": { "enabled": false, "loss_scale": 0, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json DATA_ARGS="\ --data_dir $DATA_DIR \ --train_data train.json \ --valid_data dev.json \ --test_data test.json \ --train_batchsize $BATCH_SIZE \ --valid_batchsize $VAL_BATCH_SIZE \ --max_length 64 \ --texta_name $TEXTA_NAME \ --textb_name $TEXTB_NAME \ --label_name $LABEL_NAME \ --id_name $ID_NAME \ " MODEL_ARGS="\ --learning_rate 1e-5 \ --weight_decay 1e-2 \ --warmup 0.01 \ --num_labels 2 \ " MODEL_CHECKPOINT_ARGS="\ --monitor val_acc \ --save_top_k 3 \ --mode max \ --every_n_train_steps 200 \ --save_weights_only True \ --dirpath $CHECKPOINT_PATH \ --filename model-{epoch:02d}-{val_acc:.4f} \ " TRAINER_ARGS="\ --max_epochs 10 \ --gpus 1 \ --num_nodes 1 \ --strategy $STRATEGY \ --gradient_clip_val 1.0 \ --check_val_every_n_epoch 1 \ --val_check_interval 1.0 \ --default_root_dir $ROOT_DIR \ " options=" \ --pretrained_model_path $PRETRAINED_MODEL_PATH \ --output_save_path $OUTPUT_PATH \ $DATA_ARGS \ $MODEL_ARGS \ $MODEL_CHECKPOINT_ARGS \ $TRAINER_ARGS \ " SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif SCRIPT_PATH=/cognitive_comp/ganruyi/Fengshenbang-LM/fengshen/examples/classification/finetune_classification.py # python3 $SCRIPT_PATH $options source activate base # srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH /home/ganruyi/anaconda3/bin/python $SCRIPT_PATH $options /home/ganruyi/anaconda3/bin/python $SCRIPT_PATH $options