#!/bin/bash #SBATCH --job-name=slurm-test # create a short name for your job #SBATCH --nodes=1 # node count #SBATCH --ntasks=1 # total number of tasks across all nodes #SBATCH --cpus-per-task=2 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH --mem-per-cpu=16G # memory per cpu-core (4G is default) #SBATCH --gres=gpu:1 # number of gpus per node #SBATCH --mail-type=ALL # send email when job begins, ends or failed etc. MODEL_TYPE=fengshen-roformer PRETRAINED_MODEL_PATH=IDEA-CCNL/Zhouwenwang-Unified-110M ROOT_PATH=cognitive_comp TASK=tnews DATA_DIR=/$ROOT_PATH/yangping/data/ChineseCLUE_DATA/${TASK}_public/ CHECKPOINT_PATH=/$ROOT_PATH/yangping/checkpoints/modelevaluation/tnews/ OUTPUT_PATH=/$ROOT_PATH/yangping/nlp/modelevaluation/output/predict.json DATA_ARGS="\ --data_dir $DATA_DIR \ --train_data train.json \ --valid_data dev.json \ --test_data test1.1.json \ --train_batchsize 32 \ --valid_batchsize 128 \ --max_length 128 \ --texta_name sentence \ --label_name label \ --id_name id \ " MODEL_ARGS="\ --learning_rate 0.00002 \ --weight_decay 0.1 \ --num_labels 15 \ " MODEL_CHECKPOINT_ARGS="\ --monitor val_acc \ --save_top_k 3 \ --mode max \ --every_n_train_steps 100 \ --save_weights_only True \ --dirpath $CHECKPOINT_PATH \ --filename model-{epoch:02d}-{val_acc:.4f} \ " TRAINER_ARGS="\ --max_epochs 7 \ --gpus 1 \ --check_val_every_n_epoch 1 \ --val_check_interval 100 \ --default_root_dir ./log/ \ " options=" \ --pretrained_model_path $PRETRAINED_MODEL_PATH \ --output_save_path $OUTPUT_PATH \ --model_type $MODEL_TYPE \ $DATA_ARGS \ $MODEL_ARGS \ $MODEL_CHECKPOINT_ARGS \ $TRAINER_ARGS \ " DOCKER_PATH=/$ROOT_PATH/yangping/containers/pytorch21_06_py3_docker_image.sif SCRIPT_PATH=/$ROOT_PATH/yangping/nlp/Fengshenbang-LM/fengshen/examples/classification/finetune_classification.py python3 $SCRIPT_PATH $options # singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $DOCKER_PATH python3 $SCRIPT_PATH $options