File size: 7,423 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from transformers import GPT2LMHeadModel
from data.task_dataloader.medicalQADataset import GPT2QADataModel
from transformers.optimization import get_linear_schedule_with_warmup
from pytorch_lightning import Trainer, loggers
from pytorch_lightning.callbacks import ModelCheckpoint
import pytorch_lightning as pl
import argparse
import torch
import os
import sys
sys.path.insert(0, '/cognitive_comp/wuziwei/codes/fengshen/fengshen')
# sys.path.append('../../')
# sys.path.append('../')
# os.environ["CUDA_VISIBLE_DEVICES"] = '4,5,6,7'


class GPT2FinetuneMedicalQAModelCheckpoint:
    @staticmethod
    def add_argparse_args(parent_args):
        parser = parent_args.add_argument_group('BaseModel')

        parser.add_argument('--monitor', default='train_loss', type=str)
        parser.add_argument('--mode', default='min', type=str)
        parser.add_argument('--dirpath', default='./ckpt/', type=str)
        parser.add_argument(
            '--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str)
        parser.add_argument('--save_last', action='store_true', default=True)
        parser.add_argument('--save_top_k', default=3, type=float)
        parser.add_argument('--every_n_train_steps', default=1000, type=float)
        parser.add_argument('--save_weights_only', default=True, type=bool)

        return parent_args

    def __init__(self, args):
        self.callbacks = ModelCheckpoint(monitor=args.monitor,
                                         save_top_k=args.save_top_k,
                                         mode=args.mode,
                                         #  every_n_train_steps=args.every_n_train_steps,
                                         save_weights_only=args.save_weights_only,
                                         dirpath=args.dirpath,
                                         filename=args.filename,
                                         save_last=args.save_last)


class GPT2FinetuneMedicalQA(pl.LightningModule):

    @staticmethod
    def add_model_specific_args(parent_args):
        parser = parent_args.add_argument_group('BaseModel')
        parser.add_argument('--learning_rate', default=1e-4, type=float)
        parser.add_argument('--weight_decay', default=0.1, type=float)
        parser.add_argument('--warmup', default=0.01, type=float)
        return parent_args

    def __init__(self, args, num_data):
        super().__init__()
        self.args = args
        self.num_data = num_data
        print('num_data:', num_data)
        self.model = GPT2LMHeadModel.from_pretrained(
            args.pretrained_model_path)

    def setup(self, stage) -> None:
        if stage == 'fit':
            num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0
            self.total_step = int(self.trainer.max_epochs * self.num_data /
                                  (max(1, num_gpus) * self.trainer.accumulate_grad_batches))
            print('Total training step:', self.total_step)

    def training_step(self, batch, batch_idx):
        output = self.model(input_ids=batch['input_ids'],
                            attention_mask=batch['attention_mask'], labels=batch['labels'])
        # output = self.model(input_ids=batch['input_ids'], labels=batch['labels'])
        # acc = self.comput_metrix(output.logits, batch['labels'])
        self.log('train_loss', output.loss)
        return output.loss

    def comput_metrix(self, logits, labels):
        y_pred = torch.argmax(logits, dim=-1)
        y_pred = y_pred.view(size=(-1,))
        y_true = labels.view(size=(-1,)).float()
        corr = torch.eq(y_pred, y_true)
        acc = torch.sum(corr.float())/labels.size()[0]
        return acc

    def validation_step(self, batch, batch_idx):
        output = self.model(input_ids=batch['input_ids'],
                            attention_mask=batch['attention_mask'], labels=batch['labels'])
        # output = self.model(input_ids=batch['input_ids'], labels=batch['labels'])
        # acc = self.comput_metrix(output.logits, batch['labels'])
        self.log('val_loss', output.loss)
        # self.log('val_acc', acc)

    def configure_optimizers(self):
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        paras = list(
            filter(lambda p: p[1].requires_grad, self.named_parameters()))
        paras = [{
            'params':
            [p for n, p in paras if not any(nd in n for nd in no_decay)],
            'weight_decay': self.args.weight_decay
        }, {
            'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
            'weight_decay': 0.0
        }]
        optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, int(self.total_step * self.args.warmup),
            self.total_step)

        return [{
            'optimizer': optimizer,
            'lr_scheduler': {
                'scheduler': scheduler,
                'interval': 'step',
                'frequency': 1
            }
        }]


def main():
    total_parser = argparse.ArgumentParser("Summary Task")
    total_parser.add_argument(
        '--do_eval_only', action='store_true', default=False)
    total_parser.add_argument(
        '--pretrained_model_path', default=None, type=str)
    total_parser.add_argument('--output_save_path',
                              default='./predict.json', type=str)
    # * Args for data preprocessing
    total_parser = GPT2QADataModel.add_data_specific_args(total_parser)
    # * Args for training
    total_parser = Trainer.add_argparse_args(total_parser)
    total_parser = GPT2FinetuneMedicalQAModelCheckpoint.add_argparse_args(
        total_parser)
    total_parser = GPT2FinetuneMedicalQA.add_model_specific_args(total_parser)
    # * Args for base model
    args = total_parser.parse_args()

    data_model = GPT2QADataModel(args)
    if not args.do_eval_only:
        model = GPT2FinetuneMedicalQA(args, len(data_model.train_dataloader()))
        checkpoint_callback = GPT2FinetuneMedicalQAModelCheckpoint(
            args).callbacks
        logger = loggers.TensorBoardLogger(save_dir=os.path.join(
            args.default_root_dir, 'log/'), name='MedicalQA-GPT2')
        trainer = Trainer.from_argparse_args(args,
                                             logger=logger,
                                             callbacks=[checkpoint_callback]
                                             )
        trainer.fit(model, data_model)

        # result = trainer.predict(model, data_model)
        # with open('test_results.txt', 'wt', encoding='utf-8') as w:
        #     for line in result:
        #         w.writelines(line)

        model.model.save_pretrained(
            '/cognitive_comp/wuziwei/pretrained_model_hf')
    else:
        print('save to hf.....')
        trainer = Trainer.from_argparse_args(args)
        model = GPT2FinetuneMedicalQA(
            args, len(data_model.predict_dataloader()))

        result = trainer.predict(
            model, data_model, ckpt_path='/cognitive_comp/wuziwei/task/fs_medical_qa_finetune/ckpt/last.ckpt')
        # with open('test_results.txt','wt',encoding='utf-8') as w:
        #     for line in result:
        #         w.writelines(line)

        model.model.save_pretrained(
            '/cognitive_comp/wuziwei/pretrained_model_hf')


if __name__ == '__main__':
    main()