Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -25,98 +25,303 @@ import gc
|
|
25 |
import csv
|
26 |
from datetime import datetime
|
27 |
from openai import OpenAI
|
28 |
-
import spaces
|
29 |
-
import argparse
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
import time
|
32 |
from os import path
|
33 |
import shutil
|
34 |
-
from datetime import datetime
|
35 |
from safetensors.torch import load_file
|
36 |
-
from huggingface_hub import hf_hub_download
|
37 |
-
import gradio as gr
|
38 |
-
import torch
|
39 |
from diffusers import FluxPipeline
|
40 |
from diffusers.pipelines.stable_diffusion import safety_checker
|
41 |
-
from PIL import Image
|
42 |
-
from transformers import pipeline
|
43 |
import replicate
|
44 |
import logging
|
45 |
import requests
|
46 |
from pathlib import Path
|
47 |
-
import cv2
|
48 |
-
import numpy as np
|
49 |
import sys
|
50 |
import io
|
51 |
|
52 |
-
#
|
53 |
-
from diffusers import StableDiffusionPipeline, DiffusionPipeline
|
54 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
55 |
-
from diffusers import AutoPipelineForText2Image
|
56 |
-
|
57 |
-
# Model initialization ๋ถ๋ถ ์์
|
58 |
-
if not path.exists(cache_path):
|
59 |
-
os.makedirs(cache_path, exist_ok=True)
|
60 |
-
|
61 |
-
# ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ์์
|
62 |
-
pipe = AutoPipelineForText2Image.from_pretrained(
|
63 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
64 |
-
torch_dtype=torch.float16,
|
65 |
-
use_safetensors=True,
|
66 |
-
variant="fp16"
|
67 |
-
)
|
68 |
-
pipe.to("cuda")
|
69 |
-
|
70 |
-
# ์์ ๊ฒ์ฌ๊ธฐ ์ค์
|
71 |
-
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
|
72 |
-
"CompVis/stable-diffusion-safety-checker"
|
73 |
-
)
|
74 |
-
|
75 |
-
# process_and_save_image ํจ์ ์์
|
76 |
-
@spaces.GPU
|
77 |
-
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
78 |
-
is_safe, processed_prompt = process_prompt(prompt)
|
79 |
-
if not is_safe:
|
80 |
-
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
|
81 |
-
return None, load_gallery()
|
82 |
-
|
83 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16):
|
84 |
-
try:
|
85 |
-
generated_image = pipe(
|
86 |
-
prompt=processed_prompt,
|
87 |
-
negative_prompt="low quality, worst quality, bad anatomy, bad composition, poor, low effort",
|
88 |
-
num_inference_steps=steps,
|
89 |
-
guidance_scale=scales,
|
90 |
-
height=height,
|
91 |
-
width=width,
|
92 |
-
generator=torch.Generator("cuda").manual_seed(int(seed))
|
93 |
-
).images[0]
|
94 |
-
|
95 |
-
# PIL Image๋ก ํ์คํ๊ฒ ๋ณํ
|
96 |
-
if not isinstance(generated_image, Image.Image):
|
97 |
-
generated_image = Image.fromarray(generated_image)
|
98 |
-
|
99 |
-
# RGB ๋ชจ๋๋ก ๋ณํ
|
100 |
-
if generated_image.mode != 'RGB':
|
101 |
-
generated_image = generated_image.convert('RGB')
|
102 |
-
|
103 |
-
# ๋ฉ๋ชจ๋ฆฌ์์ PNG๋ก ๋ณํ
|
104 |
-
img_byte_arr = io.BytesIO()
|
105 |
-
generated_image.save(img_byte_arr, format='PNG')
|
106 |
-
img_byte_arr = img_byte_arr.getvalue()
|
107 |
-
|
108 |
-
# ๋์คํฌ์ ์ ์ฅ
|
109 |
-
saved_path = save_image(generated_image)
|
110 |
-
if saved_path is None:
|
111 |
-
logger.warning("Failed to save generated image")
|
112 |
-
return None, load_gallery()
|
113 |
-
|
114 |
-
# PNG ํ์์ผ๋ก ๋ค์ ๋ก๋
|
115 |
-
return Image.open(io.BytesIO(img_byte_arr)), load_gallery()
|
116 |
-
except Exception as e:
|
117 |
-
logger.error(f"Error in image generation: {str(e)}")
|
118 |
-
return None, load_gallery()
|
119 |
-
|
120 |
logging.basicConfig(level=logging.INFO)
|
121 |
logger = logging.getLogger(__name__)
|
122 |
|
@@ -138,6 +343,9 @@ os.environ["HF_HOME"] = cache_path
|
|
138 |
# CUDA ์ค์
|
139 |
torch.backends.cuda.matmul.allow_tf32 = True
|
140 |
|
|
|
|
|
|
|
141 |
# ๋๋ ํ ๋ฆฌ ์์ฑ
|
142 |
for dir_path in [gallery_path, video_gallery_path]:
|
143 |
if not path.exists(dir_path):
|
@@ -155,7 +363,7 @@ def check_api_key():
|
|
155 |
def translate_if_korean(text):
|
156 |
"""ํ๊ธ์ด ํฌํจ๋ ๊ฒฝ์ฐ ์์ด๋ก ๋ฒ์ญ"""
|
157 |
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
|
158 |
-
translation =
|
159 |
return translation
|
160 |
return text
|
161 |
|
@@ -173,28 +381,11 @@ def filter_prompt(prompt):
|
|
173 |
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
|
174 |
return True, prompt
|
175 |
|
176 |
-
def
|
177 |
"""ํ๋กฌํํธ ์ ์ฒ๋ฆฌ (๋ฒ์ญ ๋ฐ ํํฐ๋ง)"""
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
translated = translator(prompt)[0]['translation_text']
|
182 |
-
prompt = translated
|
183 |
-
|
184 |
-
# ๋ถ์ ์ ํ ๋ด์ฉ ํํฐ๋ง
|
185 |
-
inappropriate_keywords = [
|
186 |
-
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
|
187 |
-
"erotic", "sensual", "seductive", "provocative", "intimate",
|
188 |
-
"violence", "gore", "blood", "death", "kill", "murder", "torture",
|
189 |
-
"drug", "suicide", "abuse", "hate", "discrimination"
|
190 |
-
]
|
191 |
-
|
192 |
-
prompt_lower = prompt.lower()
|
193 |
-
for keyword in inappropriate_keywords:
|
194 |
-
if keyword in prompt_lower:
|
195 |
-
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
|
196 |
-
|
197 |
-
return True, prompt
|
198 |
|
199 |
class timer:
|
200 |
def __init__(self, method_name="timed process"):
|
@@ -206,6 +397,15 @@ class timer:
|
|
206 |
end = time.time()
|
207 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
def upload_to_catbox(image_path):
|
211 |
"""catbox.moe API๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง ์
๋ก๋"""
|
@@ -257,415 +457,142 @@ def add_watermark(video_path):
|
|
257 |
font_scale = height * 0.05 / 30
|
258 |
thickness = 2
|
259 |
color = (255, 255, 255)
|
260 |
-
|
261 |
-
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
262 |
-
margin = int(height * 0.02)
|
263 |
-
x_pos = width - text_width - margin
|
264 |
-
y_pos = height - margin
|
265 |
-
|
266 |
-
output_path = "watermarked_output.mp4"
|
267 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
268 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
269 |
-
|
270 |
-
while cap.isOpened():
|
271 |
-
ret, frame = cap.read()
|
272 |
-
if not ret:
|
273 |
-
break
|
274 |
-
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
|
275 |
-
out.write(frame)
|
276 |
-
|
277 |
-
cap.release()
|
278 |
-
out.release()
|
279 |
-
|
280 |
-
return output_path
|
281 |
-
|
282 |
-
except Exception as e:
|
283 |
-
logger.error(f"Error adding watermark: {str(e)}")
|
284 |
-
return video_path
|
285 |
-
|
286 |
-
def generate_video(image, prompt):
|
287 |
-
logger.info("Starting video generation")
|
288 |
-
try:
|
289 |
-
if not check_api_key():
|
290 |
-
return "Replicate API key not properly configured"
|
291 |
-
|
292 |
-
if not image:
|
293 |
-
logger.error("No image provided")
|
294 |
-
return "Please upload an image"
|
295 |
-
|
296 |
-
image_url = upload_to_catbox(image)
|
297 |
-
if not image_url:
|
298 |
-
return "Failed to upload image"
|
299 |
-
|
300 |
-
input_data = {
|
301 |
-
"prompt": prompt,
|
302 |
-
"first_frame_image": image_url
|
303 |
-
}
|
304 |
-
|
305 |
-
try:
|
306 |
-
replicate.Client(api_token=REPLICATE_API_TOKEN)
|
307 |
-
output = replicate.run(
|
308 |
-
"minimax/video-01-live",
|
309 |
-
input=input_data
|
310 |
-
)
|
311 |
-
|
312 |
-
temp_file = "temp_output.mp4"
|
313 |
-
|
314 |
-
if hasattr(output, 'read'):
|
315 |
-
with open(temp_file, "wb") as file:
|
316 |
-
file.write(output.read())
|
317 |
-
elif isinstance(output, str):
|
318 |
-
response = requests.get(output)
|
319 |
-
with open(temp_file, "wb") as file:
|
320 |
-
file.write(response.content)
|
321 |
-
|
322 |
-
final_video = add_watermark(temp_file)
|
323 |
-
return final_video
|
324 |
-
|
325 |
-
except Exception as api_error:
|
326 |
-
logger.error(f"API call failed: {str(api_error)}")
|
327 |
-
return f"API call failed: {str(api_error)}"
|
328 |
-
|
329 |
-
except Exception as e:
|
330 |
-
logger.error(f"Unexpected error: {str(e)}")
|
331 |
-
return f"Unexpected error: {str(e)}"
|
332 |
-
|
333 |
-
def save_image(image):
|
334 |
-
"""Save the generated image in PNG format and return the path"""
|
335 |
-
try:
|
336 |
-
if not os.path.exists(gallery_path):
|
337 |
-
os.makedirs(gallery_path, exist_ok=True)
|
338 |
-
|
339 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
340 |
-
random_suffix = os.urandom(4).hex()
|
341 |
-
filename = f"generated_{timestamp}_{random_suffix}.png"
|
342 |
-
filepath = os.path.join(gallery_path, filename)
|
343 |
-
|
344 |
-
# PIL Image๋ก ๋ณํ
|
345 |
-
if not isinstance(image, Image.Image):
|
346 |
-
image = Image.fromarray(image)
|
347 |
-
|
348 |
-
# RGB ๋ชจ๋๋ก ๋ณํ (RGBA์์ ๋ฐ์ํ ์ ์๋ ๋ฌธ์ ๋ฐฉ์ง)
|
349 |
-
if image.mode != 'RGB':
|
350 |
-
image = image.convert('RGB')
|
351 |
-
|
352 |
-
# PNG ํ์์ผ๋ก ๋ช
์์ ์ ์ฅ
|
353 |
-
image.save(
|
354 |
-
filepath,
|
355 |
-
format='PNG',
|
356 |
-
optimize=True,
|
357 |
-
quality=100 # ์ต๊ณ ํ์ง
|
358 |
-
)
|
359 |
-
|
360 |
-
logger.info(f"Image saved successfully as PNG: {filepath}")
|
361 |
-
return filepath
|
362 |
-
except Exception as e:
|
363 |
-
logger.error(f"Error in save_image: {str(e)}")
|
364 |
-
return None
|
365 |
-
|
366 |
-
def load_gallery():
|
367 |
-
"""Load all images from the gallery directory"""
|
368 |
-
try:
|
369 |
-
os.makedirs(gallery_path, exist_ok=True)
|
370 |
-
|
371 |
-
image_files = []
|
372 |
-
for f in os.listdir(gallery_path):
|
373 |
-
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
|
374 |
-
full_path = os.path.join(gallery_path, f)
|
375 |
-
image_files.append((full_path, os.path.getmtime(full_path)))
|
376 |
-
|
377 |
-
image_files.sort(key=lambda x: x[1], reverse=True)
|
378 |
-
return [f[0] for f in image_files]
|
379 |
-
except Exception as e:
|
380 |
-
print(f"Error loading gallery: {str(e)}")
|
381 |
-
return []
|
382 |
-
|
383 |
-
|
384 |
-
# ํ๊ธ-์์ด ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
385 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
386 |
-
|
387 |
-
MAX_SEED = np.iinfo(np.int32).max
|
388 |
-
|
389 |
-
# Load Hugging Face token if needed
|
390 |
-
hf_token = os.getenv("HF_TOKEN")
|
391 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
392 |
-
client = OpenAI(api_key=openai_api_key)
|
393 |
-
|
394 |
-
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
|
395 |
-
with open(system_prompt_t2v_path, "r") as f:
|
396 |
-
system_prompt_t2v = f.read()
|
397 |
-
|
398 |
-
# Set model download directory within Hugging Face Spaces
|
399 |
-
model_path = "asset"
|
400 |
-
|
401 |
-
commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'
|
402 |
-
|
403 |
-
if not os.path.exists(model_path):
|
404 |
-
snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)
|
405 |
-
|
406 |
-
# Global variables to load components
|
407 |
-
vae_dir = Path(model_path) / "vae"
|
408 |
-
unet_dir = Path(model_path) / "unet"
|
409 |
-
scheduler_dir = Path(model_path) / "scheduler"
|
410 |
-
|
411 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
412 |
-
|
413 |
-
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
|
414 |
-
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
415 |
-
|
416 |
-
# ํ๋์ ์ผ๊ด๋ CUDA ์ค์ ์ฌ์ฉ
|
417 |
-
torch.backends.cuda.matmul.allow_tf32 = False
|
418 |
-
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
419 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
420 |
-
torch.backends.cudnn.allow_tf32 = False
|
421 |
-
torch.backends.cudnn.deterministic = False
|
422 |
-
torch.backends.cuda.preferred_blas_library = "cublas"
|
423 |
-
torch.set_float32_matmul_precision("highest")
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
def compute_clip_embedding(text=None):
|
428 |
-
inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
|
429 |
-
outputs = clip_model.get_text_features(**inputs)
|
430 |
-
embedding = outputs.detach().cpu().numpy().flatten().tolist()
|
431 |
-
return embedding
|
432 |
-
|
433 |
-
def load_vae(vae_dir):
|
434 |
-
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
435 |
-
vae_config_path = vae_dir / "config.json"
|
436 |
-
with open(vae_config_path, "r") as f:
|
437 |
-
vae_config = json.load(f)
|
438 |
-
vae = CausalVideoAutoencoder.from_config(vae_config)
|
439 |
-
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
440 |
-
vae.load_state_dict(vae_state_dict)
|
441 |
-
return vae.to(device).to(torch.bfloat16)
|
442 |
-
|
443 |
-
def load_unet(unet_dir):
|
444 |
-
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
445 |
-
unet_config_path = unet_dir / "config.json"
|
446 |
-
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
447 |
-
transformer = Transformer3DModel.from_config(transformer_config)
|
448 |
-
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
449 |
-
transformer.load_state_dict(unet_state_dict, strict=True)
|
450 |
-
return transformer.to(device).to(torch.bfloat16)
|
451 |
-
|
452 |
-
def load_scheduler(scheduler_dir):
|
453 |
-
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
454 |
-
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
455 |
-
return RectifiedFlowScheduler.from_config(scheduler_config)
|
456 |
-
|
457 |
-
# Preset options for resolution and frame configuration
|
458 |
-
preset_options = [
|
459 |
-
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
|
460 |
-
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
|
461 |
-
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
|
462 |
-
{"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
|
463 |
-
{"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
|
464 |
-
{"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
|
465 |
-
{"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
|
466 |
-
{"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
|
467 |
-
{"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
|
468 |
-
{"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
|
469 |
-
{"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
|
470 |
-
{"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
|
471 |
-
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
|
472 |
-
{"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
|
473 |
-
{"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
|
474 |
-
]
|
475 |
-
|
476 |
-
def preset_changed(preset):
|
477 |
-
if preset != "Custom":
|
478 |
-
selected = next(item for item in preset_options if item["label"] == preset)
|
479 |
-
return (
|
480 |
-
selected["height"],
|
481 |
-
selected["width"],
|
482 |
-
selected["num_frames"],
|
483 |
-
gr.update(visible=False),
|
484 |
-
gr.update(visible=False),
|
485 |
-
gr.update(visible=False),
|
486 |
-
)
|
487 |
-
else:
|
488 |
-
return (
|
489 |
-
None,
|
490 |
-
None,
|
491 |
-
None,
|
492 |
-
gr.update(visible=True),
|
493 |
-
gr.update(visible=True),
|
494 |
-
gr.update(visible=True),
|
495 |
-
)
|
496 |
-
|
497 |
-
# Load models
|
498 |
-
vae = load_vae(vae_dir)
|
499 |
-
unet = load_unet(unet_dir)
|
500 |
-
scheduler = load_scheduler(scheduler_dir)
|
501 |
-
patchifier = SymmetricPatchifier(patch_size=1)
|
502 |
-
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
|
503 |
-
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
504 |
-
|
505 |
-
pipeline = XoraVideoPipeline(
|
506 |
-
transformer=unet,
|
507 |
-
patchifier=patchifier,
|
508 |
-
text_encoder=text_encoder,
|
509 |
-
tokenizer=tokenizer,
|
510 |
-
scheduler=scheduler,
|
511 |
-
vae=vae,
|
512 |
-
).to(torch.device("cuda:0"))
|
513 |
-
|
514 |
-
def enhance_prompt_if_enabled(prompt, enhance_toggle):
|
515 |
-
if not enhance_toggle:
|
516 |
-
print("Enhance toggle is off, Prompt: ", prompt)
|
517 |
-
return prompt
|
518 |
-
|
519 |
-
messages = [
|
520 |
-
{"role": "system", "content": system_prompt_t2v},
|
521 |
-
{"role": "user", "content": prompt},
|
522 |
-
]
|
523 |
|
|
|
|
|
524 |
try:
|
525 |
-
|
526 |
-
|
527 |
-
messages=messages,
|
528 |
-
max_tokens=200,
|
529 |
-
)
|
530 |
-
print("Enhanced Prompt: ", response.choices[0].message.content.strip())
|
531 |
-
return response.choices[0].message.content.strip()
|
532 |
-
except Exception as e:
|
533 |
-
print(f"Error: {e}")
|
534 |
-
return prompt
|
535 |
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
enhance_prompt_toggle=False,
|
540 |
-
negative_prompt="",
|
541 |
-
frame_rate=25,
|
542 |
-
seed=random.randint(0, MAX_SEED),
|
543 |
-
num_inference_steps=30,
|
544 |
-
guidance_scale=3.2,
|
545 |
-
height=768,
|
546 |
-
width=768,
|
547 |
-
num_frames=60,
|
548 |
-
progress=gr.Progress(),
|
549 |
-
):
|
550 |
-
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ (ํ๊ธ -> ์์ด)
|
551 |
-
prompt = process_prompt(prompt)
|
552 |
-
negative_prompt = process_prompt(negative_prompt)
|
553 |
|
554 |
-
|
555 |
-
|
556 |
-
"
|
557 |
-
duration=5,
|
558 |
-
)
|
559 |
|
560 |
-
|
|
|
|
|
|
|
561 |
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
}
|
569 |
|
570 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
|
572 |
-
|
573 |
-
|
|
|
574 |
|
575 |
-
try:
|
576 |
-
with torch.no_grad():
|
577 |
-
images = pipeline(
|
578 |
-
num_inference_steps=num_inference_steps,
|
579 |
-
num_images_per_prompt=1,
|
580 |
-
guidance_scale=guidance_scale,
|
581 |
-
generator=generator,
|
582 |
-
output_type="pt",
|
583 |
-
height=height,
|
584 |
-
width=width,
|
585 |
-
num_frames=num_frames,
|
586 |
-
frame_rate=frame_rate,
|
587 |
-
**sample,
|
588 |
-
is_video=True,
|
589 |
-
vae_per_channel_normalize=True,
|
590 |
-
conditioning_method=ConditioningMethod.UNCONDITIONAL,
|
591 |
-
mixed_precision=True,
|
592 |
-
callback_on_step_end=gradio_progress_callback,
|
593 |
-
).images
|
594 |
except Exception as e:
|
595 |
-
|
596 |
-
|
597 |
-
duration=5,
|
598 |
-
)
|
599 |
-
finally:
|
600 |
-
torch.cuda.empty_cache()
|
601 |
-
gc.collect()
|
602 |
-
|
603 |
-
output_path = tempfile.mktemp(suffix=".mp4")
|
604 |
-
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
605 |
-
video_np = (video_np * 255).astype(np.uint8)
|
606 |
-
height, width = video_np.shape[1:3]
|
607 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
|
608 |
-
for frame in video_np[..., ::-1]:
|
609 |
-
out.write(frame)
|
610 |
-
out.release()
|
611 |
-
del images
|
612 |
-
del video_np
|
613 |
-
torch.cuda.empty_cache()
|
614 |
-
return output_path
|
615 |
|
616 |
-
def
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
num_frames_slider = gr.Slider(
|
639 |
-
label="4.5 Number of Frames",
|
640 |
-
minimum=1,
|
641 |
-
maximum=500,
|
642 |
-
step=1,
|
643 |
-
value=60,
|
644 |
-
visible=False,
|
645 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
|
656 |
# CSS ์คํ์ผ ์ ์
|
657 |
css = """
|
658 |
[์ด์ ์ CSS ์ฝ๋๋ฅผ ๊ทธ๋๋ก ์ ์ง]
|
659 |
"""
|
660 |
|
|
|
|
|
661 |
|
|
|
|
|
|
|
662 |
|
663 |
-
# Gradio ์ธํฐํ์ด์ค ์์ฑ
|
664 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
665 |
gr.HTML('<div class="title">AI Image & Video Generator</div>')
|
666 |
|
667 |
with gr.Tabs():
|
668 |
-
# ์ฒซ ๋ฒ์งธ ํญ: Image Generation
|
669 |
with gr.Tab("Image Generation"):
|
670 |
with gr.Row():
|
671 |
with gr.Column(scale=3):
|
@@ -708,9 +635,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
708 |
value=3.5
|
709 |
)
|
710 |
|
711 |
-
def get_random_seed():
|
712 |
-
return torch.randint(0, 1000000, (1,)).item()
|
713 |
-
|
714 |
seed = gr.Number(
|
715 |
label="Seed",
|
716 |
value=get_random_seed(),
|
@@ -741,7 +665,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
741 |
)
|
742 |
img_gallery.value = load_gallery()
|
743 |
|
744 |
-
# ๋ ๋ฒ์งธ ํญ: Video Generation
|
745 |
with gr.Tab("Video Generation"):
|
746 |
with gr.Row():
|
747 |
with gr.Column(scale=3):
|
@@ -770,53 +693,124 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
770 |
object_fit="cover"
|
771 |
)
|
772 |
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
generate_btn.click(
|
821 |
process_and_save_image,
|
822 |
inputs=[height, width, steps, scales, img_prompt, seed],
|
@@ -839,26 +833,5 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
839 |
outputs=[seed]
|
840 |
)
|
841 |
|
842 |
-
txt2vid_preset.change(
|
843 |
-
fn=preset_changed,
|
844 |
-
inputs=[txt2vid_preset],
|
845 |
-
outputs=txt2vid_advanced[3:],
|
846 |
-
)
|
847 |
-
|
848 |
-
txt2vid_generate.click(
|
849 |
-
fn=generate_video_from_text_90,
|
850 |
-
inputs=[
|
851 |
-
txt2vid_prompt,
|
852 |
-
txt2vid_enhance_toggle,
|
853 |
-
txt2vid_negative_prompt,
|
854 |
-
txt2vid_frame_rate,
|
855 |
-
*txt2vid_advanced,
|
856 |
-
],
|
857 |
-
outputs=txt2vid_output,
|
858 |
-
concurrency_limit=1,
|
859 |
-
concurrency_id="generate_video",
|
860 |
-
queue=True,
|
861 |
-
)
|
862 |
-
|
863 |
if __name__ == "__main__":
|
864 |
-
demo.launch(allowed_paths=[PERSISTENT_DIR])
|
|
|
25 |
import csv
|
26 |
from datetime import datetime
|
27 |
from openai import OpenAI
|
|
|
|
|
28 |
|
29 |
+
# ํ๊ธ-์์ด ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
30 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
31 |
+
|
32 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
33 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
34 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
35 |
+
torch.backends.cudnn.allow_tf32 = False
|
36 |
+
torch.backends.cudnn.deterministic = False
|
37 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
38 |
+
torch.set_float32_matmul_precision("highest")
|
39 |
+
|
40 |
+
MAX_SEED = np.iinfo(np.int32).max
|
41 |
+
|
42 |
+
# Load Hugging Face token if needed
|
43 |
+
hf_token = os.getenv("HF_TOKEN")
|
44 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
45 |
+
client = OpenAI(api_key=openai_api_key)
|
46 |
+
|
47 |
+
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
|
48 |
+
with open(system_prompt_t2v_path, "r") as f:
|
49 |
+
system_prompt_t2v = f.read()
|
50 |
+
|
51 |
+
# Set model download directory within Hugging Face Spaces
|
52 |
+
model_path = "asset"
|
53 |
+
|
54 |
+
commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'
|
55 |
+
|
56 |
+
if not os.path.exists(model_path):
|
57 |
+
snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)
|
58 |
+
|
59 |
+
# Global variables to load components
|
60 |
+
vae_dir = Path(model_path) / "vae"
|
61 |
+
unet_dir = Path(model_path) / "unet"
|
62 |
+
scheduler_dir = Path(model_path) / "scheduler"
|
63 |
+
|
64 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
+
|
66 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
|
67 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
68 |
+
|
69 |
+
def process_prompt(prompt):
|
70 |
+
# ํ๊ธ์ด ํฌํจ๋์ด ์๋์ง ํ์ธ
|
71 |
+
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in prompt):
|
72 |
+
# ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ
|
73 |
+
translated = translator(prompt)[0]['translation_text']
|
74 |
+
return translated
|
75 |
+
return prompt
|
76 |
+
|
77 |
+
def compute_clip_embedding(text=None):
|
78 |
+
inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
|
79 |
+
outputs = clip_model.get_text_features(**inputs)
|
80 |
+
embedding = outputs.detach().cpu().numpy().flatten().tolist()
|
81 |
+
return embedding
|
82 |
+
|
83 |
+
def load_vae(vae_dir):
|
84 |
+
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
85 |
+
vae_config_path = vae_dir / "config.json"
|
86 |
+
with open(vae_config_path, "r") as f:
|
87 |
+
vae_config = json.load(f)
|
88 |
+
vae = CausalVideoAutoencoder.from_config(vae_config)
|
89 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
90 |
+
vae.load_state_dict(vae_state_dict)
|
91 |
+
return vae.to(device).to(torch.bfloat16)
|
92 |
+
|
93 |
+
def load_unet(unet_dir):
|
94 |
+
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
95 |
+
unet_config_path = unet_dir / "config.json"
|
96 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
97 |
+
transformer = Transformer3DModel.from_config(transformer_config)
|
98 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
99 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
100 |
+
return transformer.to(device).to(torch.bfloat16)
|
101 |
+
|
102 |
+
def load_scheduler(scheduler_dir):
|
103 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
104 |
+
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
105 |
+
return RectifiedFlowScheduler.from_config(scheduler_config)
|
106 |
+
|
107 |
+
# Preset options for resolution and frame configuration
|
108 |
+
preset_options = [
|
109 |
+
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
|
110 |
+
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
|
111 |
+
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
|
112 |
+
{"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
|
113 |
+
{"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
|
114 |
+
{"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
|
115 |
+
{"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
|
116 |
+
{"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
|
117 |
+
{"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
|
118 |
+
{"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
|
119 |
+
{"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
|
120 |
+
{"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
|
121 |
+
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
|
122 |
+
{"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
|
123 |
+
{"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
|
124 |
+
]
|
125 |
+
|
126 |
+
def preset_changed(preset):
|
127 |
+
if preset != "Custom":
|
128 |
+
selected = next(item for item in preset_options if item["label"] == preset)
|
129 |
+
return (
|
130 |
+
selected["height"],
|
131 |
+
selected["width"],
|
132 |
+
selected["num_frames"],
|
133 |
+
gr.update(visible=False),
|
134 |
+
gr.update(visible=False),
|
135 |
+
gr.update(visible=False),
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
return (
|
139 |
+
None,
|
140 |
+
None,
|
141 |
+
None,
|
142 |
+
gr.update(visible=True),
|
143 |
+
gr.update(visible=True),
|
144 |
+
gr.update(visible=True),
|
145 |
+
)
|
146 |
+
|
147 |
+
# Load models
|
148 |
+
vae = load_vae(vae_dir)
|
149 |
+
unet = load_unet(unet_dir)
|
150 |
+
scheduler = load_scheduler(scheduler_dir)
|
151 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
152 |
+
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
|
153 |
+
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
154 |
+
|
155 |
+
pipeline_video = XoraVideoPipeline(
|
156 |
+
transformer=unet,
|
157 |
+
patchifier=patchifier,
|
158 |
+
text_encoder=text_encoder,
|
159 |
+
tokenizer=tokenizer,
|
160 |
+
scheduler=scheduler,
|
161 |
+
vae=vae,
|
162 |
+
).to(torch.device("cuda:0"))
|
163 |
+
|
164 |
+
def enhance_prompt_if_enabled(prompt, enhance_toggle):
|
165 |
+
if not enhance_toggle:
|
166 |
+
print("Enhance toggle is off, Prompt: ", prompt)
|
167 |
+
return prompt
|
168 |
+
|
169 |
+
messages = [
|
170 |
+
{"role": "system", "content": system_prompt_t2v},
|
171 |
+
{"role": "user", "content": prompt},
|
172 |
+
]
|
173 |
+
|
174 |
+
try:
|
175 |
+
response = client.chat.completions.create(
|
176 |
+
model="gpt-4-mini",
|
177 |
+
messages=messages,
|
178 |
+
max_tokens=200,
|
179 |
+
)
|
180 |
+
print("Enhanced Prompt: ", response.choices[0].message.content.strip())
|
181 |
+
return response.choices[0].message.content.strip()
|
182 |
+
except Exception as e:
|
183 |
+
print(f"Error: {e}")
|
184 |
+
return prompt
|
185 |
+
|
186 |
+
@spaces.GPU(duration=90)
|
187 |
+
def generate_video_from_text_90(
|
188 |
+
prompt="",
|
189 |
+
enhance_prompt_toggle=False,
|
190 |
+
negative_prompt="",
|
191 |
+
frame_rate=25,
|
192 |
+
seed=random.randint(0, MAX_SEED),
|
193 |
+
num_inference_steps=30,
|
194 |
+
guidance_scale=3.2,
|
195 |
+
height=768,
|
196 |
+
width=768,
|
197 |
+
num_frames=60,
|
198 |
+
progress=gr.Progress(),
|
199 |
+
):
|
200 |
+
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ (ํ๊ธ -> ์์ด)
|
201 |
+
prompt = process_prompt(prompt)
|
202 |
+
negative_prompt = process_prompt(negative_prompt)
|
203 |
+
|
204 |
+
if len(prompt.strip()) < 50:
|
205 |
+
raise gr.Error(
|
206 |
+
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
|
207 |
+
duration=5,
|
208 |
+
)
|
209 |
+
|
210 |
+
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle)
|
211 |
+
|
212 |
+
sample = {
|
213 |
+
"prompt": prompt,
|
214 |
+
"prompt_attention_mask": None,
|
215 |
+
"negative_prompt": negative_prompt,
|
216 |
+
"negative_prompt_attention_mask": None,
|
217 |
+
"media_items": None,
|
218 |
+
}
|
219 |
+
|
220 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
221 |
+
|
222 |
+
def gradio_progress_callback(self, step, timestep, kwargs):
|
223 |
+
progress((step + 1) / num_inference_steps)
|
224 |
+
|
225 |
+
try:
|
226 |
+
with torch.no_grad():
|
227 |
+
images = pipeline_video(
|
228 |
+
num_inference_steps=num_inference_steps,
|
229 |
+
num_images_per_prompt=1,
|
230 |
+
guidance_scale=guidance_scale,
|
231 |
+
generator=generator,
|
232 |
+
output_type="pt",
|
233 |
+
height=height,
|
234 |
+
width=width,
|
235 |
+
num_frames=num_frames,
|
236 |
+
frame_rate=frame_rate,
|
237 |
+
**sample,
|
238 |
+
is_video=True,
|
239 |
+
vae_per_channel_normalize=True,
|
240 |
+
conditioning_method=ConditioningMethod.UNCONDITIONAL,
|
241 |
+
mixed_precision=True,
|
242 |
+
callback_on_step_end=gradio_progress_callback,
|
243 |
+
).images
|
244 |
+
except Exception as e:
|
245 |
+
raise gr.Error(
|
246 |
+
f"An error occurred while generating the video. Please try again. Error: {e}",
|
247 |
+
duration=5,
|
248 |
+
)
|
249 |
+
finally:
|
250 |
+
torch.cuda.empty_cache()
|
251 |
+
gc.collect()
|
252 |
+
|
253 |
+
output_path = tempfile.mktemp(suffix=".mp4")
|
254 |
+
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
255 |
+
video_np = (video_np * 255).astype(np.uint8)
|
256 |
+
height, width = video_np.shape[1:3]
|
257 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
|
258 |
+
for frame in video_np[..., ::-1]:
|
259 |
+
out.write(frame)
|
260 |
+
out.release()
|
261 |
+
del images
|
262 |
+
del video_np
|
263 |
+
torch.cuda.empty_cache()
|
264 |
+
return output_path
|
265 |
+
|
266 |
+
def create_advanced_options():
|
267 |
+
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
268 |
+
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
|
269 |
+
inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
|
270 |
+
guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
|
271 |
+
|
272 |
+
height_slider = gr.Slider(
|
273 |
+
label="4.4 Height",
|
274 |
+
minimum=256,
|
275 |
+
maximum=1024,
|
276 |
+
step=64,
|
277 |
+
value=768,
|
278 |
+
visible=False,
|
279 |
+
)
|
280 |
+
width_slider = gr.Slider(
|
281 |
+
label="4.5 Width",
|
282 |
+
minimum=256,
|
283 |
+
maximum=1024,
|
284 |
+
step=64,
|
285 |
+
value=768,
|
286 |
+
visible=False,
|
287 |
+
)
|
288 |
+
num_frames_slider = gr.Slider(
|
289 |
+
label="4.5 Number of Frames",
|
290 |
+
minimum=1,
|
291 |
+
maximum=500,
|
292 |
+
step=1,
|
293 |
+
value=60,
|
294 |
+
visible=False,
|
295 |
+
)
|
296 |
+
|
297 |
+
return [
|
298 |
+
seed,
|
299 |
+
inference_steps,
|
300 |
+
guidance_scale,
|
301 |
+
height_slider,
|
302 |
+
width_slider,
|
303 |
+
num_frames_slider,
|
304 |
+
]
|
305 |
+
|
306 |
+
###############################################
|
307 |
+
# ์ฌ๊ธฐ์๋ถํฐ ๋ ๋ฒ์งธ ์ฝ๋ ํตํฉ ์ ์ฉ
|
308 |
+
###############################################
|
309 |
+
|
310 |
+
import argparse
|
311 |
import time
|
312 |
from os import path
|
313 |
import shutil
|
|
|
314 |
from safetensors.torch import load_file
|
|
|
|
|
|
|
315 |
from diffusers import FluxPipeline
|
316 |
from diffusers.pipelines.stable_diffusion import safety_checker
|
|
|
|
|
317 |
import replicate
|
318 |
import logging
|
319 |
import requests
|
320 |
from pathlib import Path
|
|
|
|
|
321 |
import sys
|
322 |
import io
|
323 |
|
324 |
+
# ๋ก๊น
์ค์
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
logging.basicConfig(level=logging.INFO)
|
326 |
logger = logging.getLogger(__name__)
|
327 |
|
|
|
343 |
# CUDA ์ค์
|
344 |
torch.backends.cuda.matmul.allow_tf32 = True
|
345 |
|
346 |
+
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ (์ด๋ฏธ ์์์ translator ์ ์ธ๋จ, ์ค๋ณต ์ ์ธ)
|
347 |
+
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") # ๋ ๋ฒ์งธ ์ฝ๋์์๋ ์ ์ธ. ๋๋ฝ์์ด ์ถ๋ ฅํ๊ธฐ ์ํด ์ถ๊ฐ.
|
348 |
+
|
349 |
# ๋๋ ํ ๋ฆฌ ์์ฑ
|
350 |
for dir_path in [gallery_path, video_gallery_path]:
|
351 |
if not path.exists(dir_path):
|
|
|
363 |
def translate_if_korean(text):
|
364 |
"""ํ๊ธ์ด ํฌํจ๋ ๊ฒฝ์ฐ ์์ด๋ก ๋ฒ์ญ"""
|
365 |
if any(ord(char) >= 0xAC00 and ord(char) <= 0xD7A3 for char in text):
|
366 |
+
translation = translator2(text)[0]['translation_text']
|
367 |
return translation
|
368 |
return text
|
369 |
|
|
|
381 |
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
|
382 |
return True, prompt
|
383 |
|
384 |
+
def process_prompt_for_sd(prompt):
|
385 |
"""ํ๋กฌํํธ ์ ์ฒ๋ฆฌ (๋ฒ์ญ ๋ฐ ํํฐ๋ง)"""
|
386 |
+
translated_prompt = translate_if_korean(prompt)
|
387 |
+
is_safe, filtered_prompt = filter_prompt(translated_prompt)
|
388 |
+
return is_safe, filtered_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
class timer:
|
391 |
def __init__(self, method_name="timed process"):
|
|
|
397 |
end = time.time()
|
398 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
399 |
|
400 |
+
# Model initialization
|
401 |
+
if not path.exists(cache_path):
|
402 |
+
os.makedirs(cache_path, exist_ok=True)
|
403 |
+
|
404 |
+
pipe_sd = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
405 |
+
pipe_sd.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
406 |
+
pipe_sd.fuse_lora(lora_scale=0.125)
|
407 |
+
pipe_sd.to(device="cuda", dtype=torch.bfloat16)
|
408 |
+
pipe_sd.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
409 |
|
410 |
def upload_to_catbox(image_path):
|
411 |
"""catbox.moe API๋ฅผ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง ์
๋ก๋"""
|
|
|
457 |
font_scale = height * 0.05 / 30
|
458 |
thickness = 2
|
459 |
color = (255, 255, 255)
|
460 |
+
|
461 |
+
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
462 |
+
margin = int(height * 0.02)
|
463 |
+
x_pos = width - text_width - margin
|
464 |
+
y_pos = height - margin
|
465 |
+
|
466 |
+
output_path = "watermarked_output.mp4"
|
467 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
468 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
469 |
+
|
470 |
+
while cap.isOpened():
|
471 |
+
ret, frame = cap.read()
|
472 |
+
if not ret:
|
473 |
+
break
|
474 |
+
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
|
475 |
+
out.write(frame)
|
476 |
+
|
477 |
+
cap.release()
|
478 |
+
out.release()
|
479 |
+
|
480 |
+
return output_path
|
481 |
+
|
482 |
+
except Exception as e:
|
483 |
+
logger.error(f"Error adding watermark: {str(e)}")
|
484 |
+
return video_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
+
def generate_video(image, prompt):
|
487 |
+
logger.info("Starting video generation")
|
488 |
try:
|
489 |
+
if not check_api_key():
|
490 |
+
return "Replicate API key not properly configured"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
+
if not image:
|
493 |
+
logger.error("No image provided")
|
494 |
+
return "Please upload an image"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
|
496 |
+
image_url = upload_to_catbox(image)
|
497 |
+
if not image_url:
|
498 |
+
return "Failed to upload image"
|
|
|
|
|
499 |
|
500 |
+
input_data = {
|
501 |
+
"prompt": prompt,
|
502 |
+
"first_frame_image": image_url
|
503 |
+
}
|
504 |
|
505 |
+
try:
|
506 |
+
replicate.Client(api_token=REPLICATE_API_TOKEN)
|
507 |
+
output = replicate.run(
|
508 |
+
"minimax/video-01-live",
|
509 |
+
input=input_data
|
510 |
+
)
|
|
|
511 |
|
512 |
+
temp_file = "temp_output.mp4"
|
513 |
+
|
514 |
+
if hasattr(output, 'read'):
|
515 |
+
with open(temp_file, "wb") as file:
|
516 |
+
file.write(output.read())
|
517 |
+
elif isinstance(output, str):
|
518 |
+
response = requests.get(output)
|
519 |
+
with open(temp_file, "wb") as file:
|
520 |
+
file.write(response.content)
|
521 |
+
|
522 |
+
final_video = add_watermark(temp_file)
|
523 |
+
return final_video
|
524 |
|
525 |
+
except Exception as api_error:
|
526 |
+
logger.error(f"API call failed: {str(api_error)}")
|
527 |
+
return f"API call failed: {str(api_error)}"
|
528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
except Exception as e:
|
530 |
+
logger.error(f"Unexpected error: {str(e)}")
|
531 |
+
return f"Unexpected error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
|
533 |
+
def save_image(image):
|
534 |
+
"""Save the generated image in PNG format and return the path"""
|
535 |
+
try:
|
536 |
+
if not os.path.exists(gallery_path):
|
537 |
+
os.makedirs(gallery_path, exist_ok=True)
|
538 |
|
539 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
540 |
+
random_suffix = os.urandom(4).hex()
|
541 |
+
filename = f"generated_{timestamp}_{random_suffix}.png"
|
542 |
+
filepath = os.path.join(gallery_path, filename)
|
543 |
+
|
544 |
+
if not isinstance(image, Image.Image):
|
545 |
+
image = Image.fromarray(image)
|
546 |
+
|
547 |
+
if image.mode != 'RGB':
|
548 |
+
image = image.convert('RGB')
|
549 |
+
|
550 |
+
image.save(
|
551 |
+
filepath,
|
552 |
+
format='PNG',
|
553 |
+
optimize=True,
|
554 |
+
quality=100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
)
|
556 |
+
|
557 |
+
logger.info(f"Image saved successfully as PNG: {filepath}")
|
558 |
+
return filepath
|
559 |
+
except Exception as e:
|
560 |
+
logger.error(f"Error in save_image: {str(e)}")
|
561 |
+
return None
|
562 |
|
563 |
+
def load_gallery():
|
564 |
+
"""Load all images from the gallery directory"""
|
565 |
+
try:
|
566 |
+
os.makedirs(gallery_path, exist_ok=True)
|
567 |
+
|
568 |
+
image_files = []
|
569 |
+
for f in os.listdir(gallery_path):
|
570 |
+
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
|
571 |
+
full_path = os.path.join(gallery_path, f)
|
572 |
+
image_files.append((full_path, os.path.getmtime(full_path)))
|
573 |
+
|
574 |
+
image_files.sort(key=lambda x: x[1], reverse=True)
|
575 |
+
return [f[0] for f in image_files]
|
576 |
+
except Exception as e:
|
577 |
+
print(f"Error loading gallery: {str(e)}")
|
578 |
+
return []
|
579 |
|
580 |
# CSS ์คํ์ผ ์ ์
|
581 |
css = """
|
582 |
[์ด์ ์ CSS ์ฝ๋๋ฅผ ๊ทธ๋๋ก ์ ์ง]
|
583 |
"""
|
584 |
|
585 |
+
def get_random_seed():
|
586 |
+
return torch.randint(0, 1000000, (1,)).item()
|
587 |
|
588 |
+
###############################################
|
589 |
+
# ์ฌ๊ธฐ์๋ถํฐ Gradio UI ํตํฉ
|
590 |
+
###############################################
|
591 |
|
|
|
592 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
593 |
gr.HTML('<div class="title">AI Image & Video Generator</div>')
|
594 |
|
595 |
with gr.Tabs():
|
|
|
596 |
with gr.Tab("Image Generation"):
|
597 |
with gr.Row():
|
598 |
with gr.Column(scale=3):
|
|
|
635 |
value=3.5
|
636 |
)
|
637 |
|
|
|
|
|
|
|
638 |
seed = gr.Number(
|
639 |
label="Seed",
|
640 |
value=get_random_seed(),
|
|
|
665 |
)
|
666 |
img_gallery.value = load_gallery()
|
667 |
|
|
|
668 |
with gr.Tab("Video Generation"):
|
669 |
with gr.Row():
|
670 |
with gr.Column(scale=3):
|
|
|
693 |
object_fit="cover"
|
694 |
)
|
695 |
|
696 |
+
# ์ดํ ์ฒซ ๋ฒ์งธ ์ฝ๋์ txt2vid ๊ด๋ จ UI๋ฅผ ํตํฉ
|
697 |
+
# ์ฒซ ๋ฒ์งธ ์ฝ๋์ txt2vid UI๋ฅผ ์ถ๊ฐ ํญ์ผ๋ก ํตํฉ
|
698 |
+
with gr.Tab("Text-to-Video Generation"):
|
699 |
+
with gr.Column():
|
700 |
+
txt2vid_prompt = gr.Textbox(
|
701 |
+
label="Step 1: Enter Your Prompt (ํ๊ธ ๋๋ ์์ด)",
|
702 |
+
placeholder="์์ฑํ๊ณ ์ถ์ ๋น๋์ค๋ฅผ ์ค๋ช
ํ์ธ์ (์ต์ 50์)...",
|
703 |
+
value="๊ธด ๊ฐ์ ๋จธ๋ฆฌ์ ๋ฐ์ ํผ๋ถ๋ฅผ ๊ฐ์ง ์ฌ์ฑ์ด ๊ธด ๊ธ๋ฐ ๋จธ๋ฆฌ๋ฅผ ๊ฐ์ง ๋ค๋ฅธ ์ฌ์ฑ์ ํฅํด ๋ฏธ์ ์ง์ต๋๋ค. ๊ฐ์ ๋จธ๋ฆฌ ์ฌ์ฑ์ ๊ฒ์ ์ฌํท์ ์
๊ณ ์์ผ๋ฉฐ ์ค๋ฅธ์ชฝ ๋บจ์ ์๊ณ ๊ฑฐ์ ๋์ ๋์ง ์๋ ์ ์ด ์์ต๋๋ค. ์นด๋ฉ๋ผ ์ต๊ธ์ ๊ฐ์ ๋จธ๋ฆฌ ์ฌ์ฑ์ ์ผ๊ตด์ ์ด์ ์ ๋ง์ถ ํด๋ก์ฆ์
์
๋๋ค. ์กฐ๋ช
์ ๋ฐ๋ปํ๊ณ ์์ฐ์ค๋ฌ์ฐ๋ฉฐ, ์๋ง๋ ์ง๋ ํด์์ ๋์ค๋ ๊ฒ ๊ฐ์ ์ฅ๋ฉด์ ๋ถ๋๋ฌ์ด ๋น์ ๋น์ถฅ๋๋ค.",
|
704 |
+
lines=5,
|
705 |
+
)
|
706 |
+
|
707 |
+
txt2vid_enhance_toggle = Toggle(
|
708 |
+
label="Enhance Prompt",
|
709 |
+
value=False,
|
710 |
+
interactive=True,
|
711 |
+
)
|
712 |
+
|
713 |
+
txt2vid_negative_prompt = gr.Textbox(
|
714 |
+
label="Step 2: Enter Negative Prompt",
|
715 |
+
placeholder="๋น๋์ค์์ ์ํ์ง ์๋ ์์๋ฅผ ๏ฟฝ๏ฟฝ๏ฟฝ๋ช
ํ์ธ์...",
|
716 |
+
value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly",
|
717 |
+
lines=2,
|
718 |
+
)
|
719 |
+
|
720 |
+
txt2vid_preset = gr.Dropdown(
|
721 |
+
choices=[p["label"] for p in preset_options],
|
722 |
+
value="512x512, 160 frames",
|
723 |
+
label="Step 3.1: Choose Resolution Preset",
|
724 |
+
)
|
725 |
+
|
726 |
+
txt2vid_frame_rate = gr.Slider(
|
727 |
+
label="Step 3.2: Frame Rate",
|
728 |
+
minimum=6,
|
729 |
+
maximum=60,
|
730 |
+
step=1,
|
731 |
+
value=20,
|
732 |
+
)
|
733 |
+
|
734 |
+
txt2vid_advanced = create_advanced_options()
|
735 |
+
txt2vid_generate = gr.Button(
|
736 |
+
"Step 5: Generate Video",
|
737 |
+
variant="primary",
|
738 |
+
size="lg",
|
739 |
+
)
|
740 |
+
|
741 |
+
txt2vid_output = gr.Video(label="Generated Output")
|
742 |
+
|
743 |
+
txt2vid_preset.change(
|
744 |
+
fn=preset_changed,
|
745 |
+
inputs=[txt2vid_preset],
|
746 |
+
outputs=txt2vid_advanced[3:],
|
747 |
+
)
|
748 |
+
|
749 |
+
txt2vid_generate.click(
|
750 |
+
fn=generate_video_from_text_90,
|
751 |
+
inputs=[
|
752 |
+
txt2vid_prompt,
|
753 |
+
txt2vid_enhance_toggle,
|
754 |
+
txt2vid_negative_prompt,
|
755 |
+
txt2vid_frame_rate,
|
756 |
+
*txt2vid_advanced,
|
757 |
+
],
|
758 |
+
outputs=txt2vid_output,
|
759 |
+
concurrency_limit=1,
|
760 |
+
concurrency_id="generate_video",
|
761 |
+
queue=True,
|
762 |
+
)
|
763 |
+
|
764 |
+
@spaces.GPU
|
765 |
+
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
766 |
+
is_safe, translated_prompt = process_prompt_for_sd(prompt)
|
767 |
+
if not is_safe:
|
768 |
+
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
|
769 |
+
return None, load_gallery()
|
770 |
+
|
771 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
772 |
+
try:
|
773 |
+
generated_image = pipe_sd(
|
774 |
+
prompt=[translated_prompt],
|
775 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
776 |
+
num_inference_steps=int(steps),
|
777 |
+
guidance_scale=float(scales),
|
778 |
+
height=int(height),
|
779 |
+
width=int(width),
|
780 |
+
max_sequence_length=256
|
781 |
+
).images[0]
|
782 |
+
|
783 |
+
if not isinstance(generated_image, Image.Image):
|
784 |
+
generated_image = Image.fromarray(generated_image)
|
785 |
+
|
786 |
+
if generated_image.mode != 'RGB':
|
787 |
+
generated_image = generated_image.convert('RGB')
|
788 |
+
|
789 |
+
img_byte_arr = io.BytesIO()
|
790 |
+
generated_image.save(img_byte_arr, format='PNG')
|
791 |
+
img_byte_arr = img_byte_arr.getvalue()
|
792 |
+
|
793 |
+
saved_path = save_image(generated_image)
|
794 |
+
if saved_path is None:
|
795 |
+
logger.warning("Failed to save generated image")
|
796 |
+
return None, load_gallery()
|
797 |
+
|
798 |
+
return Image.open(io.BytesIO(img_byte_arr)), load_gallery()
|
799 |
+
except Exception as e:
|
800 |
+
logger.error(f"Error in image generation: {str(e)}")
|
801 |
+
return None, load_gallery()
|
802 |
+
|
803 |
+
|
804 |
+
def process_and_generate_video(image, prompt):
|
805 |
+
is_safe, translated_prompt = process_prompt_for_sd(prompt)
|
806 |
+
if not is_safe:
|
807 |
+
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
|
808 |
+
return None
|
809 |
+
return generate_video(image, translated_prompt)
|
810 |
+
|
811 |
+
def update_seed():
|
812 |
+
return get_random_seed()
|
813 |
+
|
814 |
generate_btn.click(
|
815 |
process_and_save_image,
|
816 |
inputs=[height, width, steps, scales, img_prompt, seed],
|
|
|
833 |
outputs=[seed]
|
834 |
)
|
835 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
if __name__ == "__main__":
|
837 |
+
demo.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False, allowed_paths=[PERSISTENT_DIR])
|