Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from peft import AutoPeftModelForCausalLM | |
from transformers import AutoTokenizer, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
from typing import Generator | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("./lora_model") | |
model = AutoPeftModelForCausalLM.from_pretrained("./lora_model", device_map=0, torch_dtype="auto") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
) -> Generator[str, None, None]: | |
torch.cuda.empty_cache() | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
convo_string = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True) | |
assert isinstance(convo_string, str) | |
# Tokenize the conversation | |
convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) | |
input_ids = torch.tensor(convo_tokens, dtype=torch.long) | |
attention_mask = torch.ones_like(input_ids) | |
# Move to GPU | |
input_ids = input_ids.unsqueeze(0).to("cuda") | |
attention_mask = attention_mask.unsqueeze(0).to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
suppress_tokens=None, | |
use_cache=True, | |
temperature=temperature, | |
top_k=None, | |
top_p=top_p, | |
streamer=streamer, | |
) | |
if temperature == 0: | |
generate_kwargs["do_sample"] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = ["score_7_up,"] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful image generation prompt writing AI. You write image generation prompts based on user requests. The prompt you write should be 150 words or longer.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
examples=[ | |
["Please write a random prompt."], | |
["I'd like an image based on the tags: black and white, two women, gym, minimalist design, exposed beams, kneeling, holding head, casual wear."], | |
["Can you create an image of a woman hiking and resting on a rock in a beautiful forest with mountains?"], | |
["can u make a creepy hallway pic, like something out of a weird dream, with shadows and a mysterious figure at the end? maybe some reds and blacks, make it look kinda eerie and otherworldly pls"], | |
["Beach sunset with silhouettes on rocks and birds flying"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |