Pijush2023 commited on
Commit
c2184af
·
verified ·
1 Parent(s): c6595ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +760 -88
app.py CHANGED
@@ -1,3 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import requests
3
  import os
@@ -63,11 +800,7 @@ def get_current_time_and_date():
63
 
64
  current_time_and_date = get_current_time_and_date()
65
 
66
-
67
-
68
  def fetch_local_events():
69
-
70
-
71
  api_key = os.environ['SERP_API']
72
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
  response = requests.get(url)
@@ -130,9 +863,6 @@ def fetch_local_events():
130
  else:
131
  return "<p>Failed to fetch local events</p>"
132
 
133
-
134
-
135
-
136
  def fetch_local_weather():
137
  try:
138
  api_key = os.environ['WEATHER_API']
@@ -226,14 +956,6 @@ event type and description.And also add this Birmingham,AL at the end of each ad
226
  Question: {question}
227
  Helpful Answer:"""
228
 
229
-
230
- # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
- # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
- # {context}
234
- # Question: {question}
235
- # Helpful Answer:"""
236
-
237
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
  Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
@@ -273,7 +995,6 @@ def initialize_agent_with_prompt(prompt_template):
273
  )
274
  return agent
275
 
276
-
277
  def generate_answer(message, choice):
278
  logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
 
@@ -289,10 +1010,6 @@ def generate_answer(message, choice):
289
  addresses = extract_addresses(response['output'])
290
  return response['output'], addresses
291
 
292
-
293
-
294
-
295
-
296
  def bot(history, choice, tts_choice, state):
297
  if not history:
298
  return history
@@ -319,8 +1036,6 @@ def add_message(history, message):
319
  history.append((message, None))
320
  return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
321
 
322
-
323
-
324
  def print_like_dislike(x: gr.LikeData):
325
  print(x.index, x.value, x.liked)
326
 
@@ -346,8 +1061,6 @@ def extract_addresses(response):
346
 
347
  all_addresses = []
348
 
349
-
350
-
351
  def generate_map(location_names):
352
  global all_addresses
353
  all_addresses.extend(location_names)
@@ -362,14 +1075,13 @@ def generate_map(location_names):
362
  if geocode_result:
363
  location = geocode_result[0]['geometry']['location']
364
  folium.Marker(
365
- [location['lat'], location['lng']],
366
  tooltip=f"{geocode_result[0]['formatted_address']}"
367
  ).add_to(m)
368
 
369
  map_html = m._repr_html_()
370
  return map_html
371
 
372
-
373
  def fetch_local_news():
374
  api_key = os.environ['SERP_API']
375
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
@@ -458,50 +1170,26 @@ pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=proce
458
 
459
  base_audio_drive = "/data/audio"
460
 
461
- # def transcribe_function(stream, new_chunk):
462
- # try:
463
- # sr, y = new_chunk[0], new_chunk[1]
464
- # except TypeError:
465
- # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
466
- # return stream, "", None
467
-
468
- # y = y.astype(np.float32) / np.max(np.abs(y))
469
-
470
- # if stream is not None:
471
- # stream = np.concatenate([stream, y])
472
- # else:
473
- # stream = y
474
-
475
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
476
-
477
- # full_text = result.get("text","")
478
-
479
- # return stream, full_text, result
480
-
481
 
482
- # def transcribe_function(stream, new_chunk):
483
- # sr, y = new_chunk[0], new_chunk[1]
484
- # y = y.astype(np.float32) / np.max(np.abs(y))
485
- # if stream is not None:
486
- # stream = np.concatenate([stream, y])
487
- # else:
488
- # stream = y
489
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
490
- # full_text = result.get("text", "")
491
- # return stream, full_text # Return the transcribed text
492
 
493
  def transcribe_function(stream, new_chunk):
494
  sr, y = new_chunk[0], new_chunk[1]
495
  y = y.astype(np.float32) / np.max(np.abs(y))
496
- stream = y # Always start with fresh stream
 
 
 
497
  result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
498
  full_text = result.get("text", "")
499
  return stream, full_text # Return the transcribed text
500
 
501
- def transfer_text(transcribed_text):
502
- return transcribed_text, gr.Textbox.update(value=transcribed_text)
503
-
504
-
505
  def update_map_with_response(history):
506
  if not history:
507
  return ""
@@ -512,7 +1200,7 @@ def update_map_with_response(history):
512
  def clear_textbox():
513
  return ""
514
 
515
- def show_map_if_details(history,choice):
516
  if choice in ["Details", "Conversational"]:
517
  return gr.update(visible=True), update_map_with_response(history)
518
  else:
@@ -645,7 +1333,6 @@ def generate_audio_mars5(text):
645
  cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
646
  ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
647
 
648
-
649
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
650
  torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
651
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
@@ -693,14 +1380,14 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
693
 
694
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
695
 
696
- chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
697
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
698
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
699
- retriver_button = gr.Button("Retriever")
700
 
701
  gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
702
  location_output = gr.HTML()
703
- retriver_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
704
  fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
705
  fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder").then(
706
  fn=clear_state_and_textbox, inputs=[], outputs=[chat_input]
@@ -713,27 +1400,13 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
713
  clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
714
 
715
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
716
- # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
717
- transcribed_text = gr.Textbox(interactive=False, show_label=False)
718
-
719
- audio_input.stream(transcribe_function, inputs=[None, audio_input], outputs=[None, transcribed_text])
720
-
721
- transfer_button = gr.Button("Transfer to Input Prompt")
722
- transfer_button.click(fn=transfer_text, inputs=[transcribed_text], outputs=[transcribed_text, chat_input])
723
-
724
- demo.append(audio_input)
725
- demo.append(transcribed_text)
726
- demo.append(transfer_button)
727
-
728
-
729
-
730
-
731
 
732
- # with gr.Column():
733
- # weather_output = gr.HTML(value=fetch_local_weather())
734
- # news_output = gr.HTML(value=fetch_local_news())
735
- # news_output = gr.HTML(value=fetch_local_events())
736
-
737
 
738
  with gr.Column():
739
  image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
@@ -745,8 +1418,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
745
  location_output = gr.HTML()
746
  bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
747
 
748
-
749
-
750
  demo.queue()
751
  demo.launch(share=True)
752
 
 
 
1
+ # import gradio as gr
2
+ # import requests
3
+ # import os
4
+ # import time
5
+ # import re
6
+ # import logging
7
+ # import tempfile
8
+ # import folium
9
+ # import concurrent.futures
10
+ # import torch
11
+ # from PIL import Image
12
+ # from datetime import datetime
13
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
+ # from googlemaps import Client as GoogleMapsClient
15
+ # from gtts import gTTS
16
+ # from diffusers import StableDiffusionPipeline
17
+ # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
+ # from langchain_pinecone import PineconeVectorStore
19
+ # from langchain.prompts import PromptTemplate
20
+ # from langchain.chains import RetrievalQA
21
+ # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
+ # from langchain.agents import Tool, initialize_agent
23
+ # from huggingface_hub import login
24
+ # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
+ # from parler_tts import ParlerTTSForConditionalGeneration
26
+ # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
+ # from scipy.io.wavfile import write as write_wav
28
+ # from pydub import AudioSegment
29
+ # from string import punctuation
30
+ # import librosa
31
+ # from pathlib import Path
32
+ # import torchaudio
33
+
34
+ # # Check if the token is already set in the environment variables
35
+ # hf_token = os.getenv("HF_TOKEN")
36
+ # if hf_token is None:
37
+ # print("Please set your Hugging Face token in the environment variables.")
38
+ # else:
39
+ # login(token=hf_token)
40
+
41
+ # logging.basicConfig(level=logging.DEBUG)
42
+
43
+ # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
+
45
+ # from pinecone import Pinecone
46
+ # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
+
48
+ # index_name = "birminghumsummary1"
49
+ # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
+ # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
+
52
+ # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
+
54
+ # conversational_memory = ConversationBufferWindowMemory(
55
+ # memory_key='chat_history',
56
+ # k=10,
57
+ # return_messages=True
58
+ # )
59
+
60
+ # def get_current_time_and_date():
61
+ # now = datetime.now()
62
+ # return now.strftime("%Y-%m-%d %H:%M:%S")
63
+
64
+ # current_time_and_date = get_current_time_and_date()
65
+
66
+
67
+
68
+ # def fetch_local_events():
69
+
70
+
71
+ # api_key = os.environ['SERP_API']
72
+ # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
+ # response = requests.get(url)
74
+ # if response.status_code == 200:
75
+ # events_results = response.json().get("events_results", [])
76
+ # events_html = """
77
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
78
+ # <style>
79
+ # table {
80
+ # font-family: 'Verdana', sans-serif;
81
+ # color: #333;
82
+ # border-collapse: collapse;
83
+ # width: 100%;
84
+ # }
85
+ # th, td {
86
+ # border: 1px solid #fff !important;
87
+ # padding: 8px;
88
+ # }
89
+ # th {
90
+ # background-color: #f2f2f2;
91
+ # color: #333;
92
+ # text-align: left;
93
+ # }
94
+ # tr:hover {
95
+ # background-color: #f5f5f5;
96
+ # }
97
+ # .event-link {
98
+ # color: #1E90FF;
99
+ # text-decoration: none;
100
+ # }
101
+ # .event-link:hover {
102
+ # text-decoration: underline;
103
+ # }
104
+ # </style>
105
+ # <table>
106
+ # <tr>
107
+ # <th>Title</th>
108
+ # <th>Date and Time</th>
109
+ # <th>Location</th>
110
+ # </tr>
111
+ # """
112
+ # for event in events_results:
113
+ # title = event.get("title", "No title")
114
+ # date_info = event.get("date", {})
115
+ # date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
116
+ # location = event.get("address", "No location")
117
+ # if isinstance(location, list):
118
+ # location = " ".join(location)
119
+ # location = location.replace("[", "").replace("]", "")
120
+ # link = event.get("link", "#")
121
+ # events_html += f"""
122
+ # <tr>
123
+ # <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
124
+ # <td>{date}</td>
125
+ # <td>{location}</td>
126
+ # </tr>
127
+ # """
128
+ # events_html += "</table>"
129
+ # return events_html
130
+ # else:
131
+ # return "<p>Failed to fetch local events</p>"
132
+
133
+
134
+
135
+
136
+ # def fetch_local_weather():
137
+ # try:
138
+ # api_key = os.environ['WEATHER_API']
139
+ # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
140
+ # response = requests.get(url)
141
+ # response.raise_for_status()
142
+ # jsonData = response.json()
143
+
144
+ # current_conditions = jsonData.get("currentConditions", {})
145
+ # temp_celsius = current_conditions.get("temp", "N/A")
146
+
147
+ # if temp_celsius != "N/A":
148
+ # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
149
+ # else:
150
+ # temp_fahrenheit = "N/A"
151
+
152
+ # condition = current_conditions.get("conditions", "N/A")
153
+ # humidity = current_conditions.get("humidity", "N/A")
154
+
155
+ # weather_html = f"""
156
+ # <div class="weather-theme">
157
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
158
+ # <div class="weather-content">
159
+ # <div class="weather-icon">
160
+ # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
161
+ # </div>
162
+ # <div class="weather-details">
163
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
164
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
165
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
166
+ # </div>
167
+ # </div>
168
+ # </div>
169
+ # <style>
170
+ # .weather-theme {{
171
+ # animation: backgroundAnimation 10s infinite alternate;
172
+ # border-radius: 10px;
173
+ # padding: 10px;
174
+ # margin-bottom: 15px;
175
+ # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
176
+ # background-size: 400% 400%;
177
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
178
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
179
+ # }}
180
+ # .weather-theme:hover {{
181
+ # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
182
+ # background-position: 100% 100%;
183
+ # }}
184
+ # @keyframes backgroundAnimation {{
185
+ # 0% {{ background-position: 0% 50%; }}
186
+ # 100% {{ background-position: 100% 50%; }}
187
+ # }}
188
+ # .weather-content {{
189
+ # display: flex;
190
+ # align-items: center;
191
+ # }}
192
+ # .weather-icon {{
193
+ # flex: 1;
194
+ # }}
195
+ # .weather-details {{
196
+ # flex: 3;
197
+ # }}
198
+ # </style>
199
+ # """
200
+ # return weather_html
201
+ # except requests.exceptions.RequestException as e:
202
+ # return f"<p>Failed to fetch local weather: {e}</p>"
203
+
204
+ # def get_weather_icon(condition):
205
+ # condition_map = {
206
+ # "Clear": "c01d",
207
+ # "Partly Cloudy": "c02d",
208
+ # "Cloudy": "c03d",
209
+ # "Overcast": "c04d",
210
+ # "Mist": "a01d",
211
+ # "Patchy rain possible": "r01d",
212
+ # "Light rain": "r02d",
213
+ # "Moderate rain": "r03d",
214
+ # "Heavy rain": "r04d",
215
+ # "Snow": "s01d",
216
+ # "Thunderstorm": "t01d",
217
+ # "Fog": "a05d",
218
+ # }
219
+ # return condition_map.get(condition, "c04d")
220
+
221
+ # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
222
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
223
+ # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
224
+ # event type and description.And also add this Birmingham,AL at the end of each address, Always say "It was my pleasure!" at the end of the answer.
225
+ # {context}
226
+ # Question: {question}
227
+ # Helpful Answer:"""
228
+
229
+
230
+ # # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
+ # # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
+ # # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
+ # # {context}
234
+ # # Question: {question}
235
+ # # Helpful Answer:"""
236
+
237
+ # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
+ # Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
240
+ # {context}
241
+ # Question: {question}
242
+ # Helpful Answer:"""
243
+
244
+ # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
245
+ # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
246
+
247
+ # def build_qa_chain(prompt_template):
248
+ # qa_chain = RetrievalQA.from_chain_type(
249
+ # llm=chat_model,
250
+ # chain_type="stuff",
251
+ # retriever=retriever,
252
+ # chain_type_kwargs={"prompt": prompt_template}
253
+ # )
254
+ # tools = [
255
+ # Tool(
256
+ # name='Knowledge Base',
257
+ # func=qa_chain,
258
+ # description='Use this tool when answering general knowledge queries to get more information about the topic'
259
+ # )
260
+ # ]
261
+ # return qa_chain, tools
262
+
263
+ # def initialize_agent_with_prompt(prompt_template):
264
+ # qa_chain, tools = build_qa_chain(prompt_template)
265
+ # agent = initialize_agent(
266
+ # agent='chat-conversational-react-description',
267
+ # tools=tools,
268
+ # llm=chat_model,
269
+ # verbose=False,
270
+ # max_iteration=5,
271
+ # early_stopping_method='generate',
272
+ # memory=conversational_memory
273
+ # )
274
+ # return agent
275
+
276
+
277
+ # def generate_answer(message, choice):
278
+ # logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
+
280
+ # if choice == "Details":
281
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
282
+ # elif choice == "Conversational":
283
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
284
+ # else:
285
+ # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
286
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
287
+ # response = agent(message)
288
+
289
+ # addresses = extract_addresses(response['output'])
290
+ # return response['output'], addresses
291
+
292
+
293
+
294
+
295
+
296
+ # def bot(history, choice, tts_choice, state):
297
+ # if not history:
298
+ # return history
299
+ # response, addresses = generate_answer(history[-1][0], choice)
300
+ # history[-1][1] = ""
301
+
302
+ # with concurrent.futures.ThreadPoolExecutor() as executor:
303
+ # if tts_choice == "Alpha":
304
+ # audio_future = executor.submit(generate_audio_elevenlabs, response)
305
+ # elif tts_choice == "Beta":
306
+ # audio_future = executor.submit(generate_audio_parler_tts, response)
307
+ # elif tts_choice == "Gamma":
308
+ # audio_future = executor.submit(generate_audio_mars5, response)
309
+
310
+ # for character in response:
311
+ # history[-1][1] += character
312
+ # time.sleep(0.05)
313
+ # yield history, None
314
+
315
+ # audio_path = audio_future.result()
316
+ # yield history, audio_path
317
+
318
+ # def add_message(history, message):
319
+ # history.append((message, None))
320
+ # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
321
+
322
+
323
+
324
+ # def print_like_dislike(x: gr.LikeData):
325
+ # print(x.index, x.value, x.liked)
326
+
327
+ # def extract_addresses(response):
328
+ # if not isinstance(response, str):
329
+ # response = str(response)
330
+ # address_patterns = [
331
+ # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
332
+ # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
333
+ # r'([A-Z].*,\sAL\s\d{5})',
334
+ # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
335
+ # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
336
+ # r'(\d{2}.*\sStreets)',
337
+ # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
338
+ # r'([a-zA-Z]\s Birmingham)',
339
+ # r'([a-zA-Z].*,\sBirmingham,\sAL)',
340
+ # r'(^Birmingham,AL$)'
341
+ # ]
342
+ # addresses = []
343
+ # for pattern in address_patterns:
344
+ # addresses.extend(re.findall(pattern, response))
345
+ # return addresses
346
+
347
+ # all_addresses = []
348
+
349
+
350
+
351
+ # def generate_map(location_names):
352
+ # global all_addresses
353
+ # all_addresses.extend(location_names)
354
+
355
+ # api_key = os.environ['GOOGLEMAPS_API_KEY']
356
+ # gmaps = GoogleMapsClient(key=api_key)
357
+
358
+ # m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
359
+
360
+ # for location_name in all_addresses:
361
+ # geocode_result = gmaps.geocode(location_name)
362
+ # if geocode_result:
363
+ # location = geocode_result[0]['geometry']['location']
364
+ # folium.Marker(
365
+ # [location['lat'], location['lng']],
366
+ # tooltip=f"{geocode_result[0]['formatted_address']}"
367
+ # ).add_to(m)
368
+
369
+ # map_html = m._repr_html_()
370
+ # return map_html
371
+
372
+
373
+ # def fetch_local_news():
374
+ # api_key = os.environ['SERP_API']
375
+ # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
376
+ # response = requests.get(url)
377
+ # if response.status_code == 200:
378
+ # results = response.json().get("news_results", [])
379
+ # news_html = """
380
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
381
+ # <style>
382
+ # .news-item {
383
+ # font-family: 'Verdana', sans-serif;
384
+ # color: #333;
385
+ # background-color: #f0f8ff;
386
+ # margin-bottom: 15px;
387
+ # padding: 10px;
388
+ # border-radius: 5px;
389
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
390
+ # font-weight: bold;
391
+ # }
392
+ # .news-item:hover {
393
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
394
+ # background-color: #e6f7ff;
395
+ # }
396
+ # .news-item a {
397
+ # color: #1E90FF;
398
+ # text-decoration: none;
399
+ # font-weight: bold;
400
+ # }
401
+ # .news-item a:hover {
402
+ # text-decoration: underline;
403
+ # }
404
+ # .news-preview {
405
+ # position: absolute;
406
+ # display: none;
407
+ # border: 1px solid #ccc;
408
+ # border-radius: 5px;
409
+ # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
410
+ # background-color: white;
411
+ # z-index: 1000;
412
+ # max-width: 300px;
413
+ # padding: 10px;
414
+ # font-family: 'Verdana', sans-serif;
415
+ # color: #333;
416
+ # }
417
+ # </style>
418
+ # <script>
419
+ # function showPreview(event, previewContent) {
420
+ # var previewBox = document.getElementById('news-preview');
421
+ # previewBox.innerHTML = previewContent;
422
+ # previewBox.style.left = event.pageX + 'px';
423
+ # previewBox.style.top = event.pageY + 'px';
424
+ # previewBox.style.display = 'block';
425
+ # }
426
+ # function hidePreview() {
427
+ # var previewBox = document.getElementById('news-preview');
428
+ # previewBox.style.display = 'none';
429
+ # }
430
+ # </script>
431
+ # <div id="news-preview" class="news-preview"></div>
432
+ # """
433
+ # for index, result in enumerate(results[:7]):
434
+ # title = result.get("title", "No title")
435
+ # link = result.get("link", "#")
436
+ # snippet = result.get("snippet", "")
437
+ # news_html += f"""
438
+ # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
439
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
440
+ # <p>{snippet}</p>
441
+ # </div>
442
+ # """
443
+ # return news_html
444
+ # else:
445
+ # return "<p>Failed to fetch local news</p>"
446
+
447
+ # import numpy as np
448
+ # import torch
449
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
450
+
451
+ # model_id = 'openai/whisper-large-v3'
452
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
453
+ # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
454
+ # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
455
+ # processor = AutoProcessor.from_pretrained(model_id)
456
+
457
+ # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
458
+
459
+ # base_audio_drive = "/data/audio"
460
+
461
+ # # def transcribe_function(stream, new_chunk):
462
+ # # try:
463
+ # # sr, y = new_chunk[0], new_chunk[1]
464
+ # # except TypeError:
465
+ # # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
466
+ # # return stream, "", None
467
+
468
+ # # y = y.astype(np.float32) / np.max(np.abs(y))
469
+
470
+ # # if stream is not None:
471
+ # # stream = np.concatenate([stream, y])
472
+ # # else:
473
+ # # stream = y
474
+
475
+ # # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
476
+
477
+ # # full_text = result.get("text","")
478
+
479
+ # # return stream, full_text, result
480
+
481
+
482
+ # def transcribe_function(stream, new_chunk):
483
+ # sr, y = new_chunk[0], new_chunk[1]
484
+ # y = y.astype(np.float32) / np.max(np.abs(y))
485
+ # if stream is not None:
486
+ # stream = np.concatenate([stream, y])
487
+ # else:
488
+ # stream = y
489
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
490
+ # full_text = result.get("text", "")
491
+ # return stream, full_text # Return the transcribed text
492
+
493
+
494
+
495
+
496
+ # def update_map_with_response(history):
497
+ # if not history:
498
+ # return ""
499
+ # response = history[-1][1]
500
+ # addresses = extract_addresses(response)
501
+ # return generate_map(addresses)
502
+
503
+ # def clear_textbox():
504
+ # return ""
505
+
506
+ # def show_map_if_details(history,choice):
507
+ # if choice in ["Details", "Conversational"]:
508
+ # return gr.update(visible=True), update_map_with_response(history)
509
+ # else:
510
+ # return gr.update(visible=False), ""
511
+
512
+ # def generate_audio_elevenlabs(text):
513
+ # XI_API_KEY = os.environ['ELEVENLABS_API']
514
+ # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
515
+ # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
516
+ # headers = {
517
+ # "Accept": "application/json",
518
+ # "xi-api-key": XI_API_KEY
519
+ # }
520
+ # data = {
521
+ # "text": str(text),
522
+ # "model_id": "eleven_multilingual_v2",
523
+ # "voice_settings": {
524
+ # "stability": 1.0,
525
+ # "similarity_boost": 0.0,
526
+ # "style": 0.60,
527
+ # "use_speaker_boost": False
528
+ # }
529
+ # }
530
+ # response = requests.post(tts_url, headers=headers, json=data, stream=True)
531
+ # if response.ok:
532
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
533
+ # for chunk in response.iter_content(chunk_size=1024):
534
+ # f.write(chunk)
535
+ # temp_audio_path = f.name
536
+ # logging.debug(f"Audio saved to {temp_audio_path}")
537
+ # return temp_audio_path
538
+ # else:
539
+ # logging.error(f"Error generating audio: {response.text}")
540
+ # return None
541
+
542
+ # repo_id = "parler-tts/parler-tts-mini-expresso"
543
+
544
+ # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
545
+ # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
546
+ # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
547
+
548
+ # SAMPLE_RATE = parler_feature_extractor.sampling_rate
549
+ # SEED = 42
550
+
551
+ # def preprocess(text):
552
+ # number_normalizer = EnglishNumberNormalizer()
553
+ # text = number_normalizer(text).strip()
554
+ # if text[-1] not in punctuation:
555
+ # text = f"{text}."
556
+
557
+ # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
558
+
559
+ # def separate_abb(chunk):
560
+ # chunk = chunk.replace(".", "")
561
+ # return " ".join(chunk)
562
+
563
+ # abbreviations = re.findall(abbreviations_pattern, text)
564
+ # for abv in abbreviations:
565
+ # if abv in text:
566
+ # text = text.replace(abv, separate_abb(abv))
567
+ # return text
568
+
569
+ # def chunk_text(text, max_length=250):
570
+ # words = text.split()
571
+ # chunks = []
572
+ # current_chunk = []
573
+ # current_length = 0
574
+
575
+ # for word in words:
576
+ # if current_length + len(word) + 1 <= max_length:
577
+ # current_chunk.append(word)
578
+ # current_length += len(word) + 1
579
+ # else:
580
+ # chunks.append(' '.join(current_chunk))
581
+ # current_chunk = [word]
582
+ # current_length = len(word) + 1
583
+
584
+ # if current_chunk:
585
+ # chunks.append(' '.join(current_chunk))
586
+
587
+ # return chunks
588
+
589
+ # def generate_audio_parler_tts(text):
590
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
591
+ # chunks = chunk_text(preprocess(text))
592
+ # audio_segments = []
593
+
594
+ # for chunk in chunks:
595
+ # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
596
+ # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
597
+
598
+ # set_seed(SEED)
599
+ # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
600
+ # audio_arr = generation.cpu().numpy().squeeze()
601
+
602
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
603
+ # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
604
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
605
+
606
+ # combined_audio = sum(audio_segments)
607
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
608
+ # combined_audio.export(combined_audio_path, format="wav")
609
+
610
+ # logging.debug(f"Audio saved to {combined_audio_path}")
611
+ # return combined_audio_path
612
+
613
+ # # Load the MARS5 model
614
+ # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
615
+
616
+ # def generate_audio_mars5(text):
617
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
618
+ # kwargs_dict = {
619
+ # 'temperature': 0.2,
620
+ # 'top_k': -1,
621
+ # 'top_p': 0.2,
622
+ # 'typical_p': 1.0,
623
+ # 'freq_penalty': 2.6,
624
+ # 'presence_penalty': 0.4,
625
+ # 'rep_penalty_window': 100,
626
+ # 'max_prompt_phones': 360,
627
+ # 'deep_clone': True,
628
+ # 'nar_guidance_w': 3
629
+ # }
630
+
631
+ # chunks = chunk_text(preprocess(text))
632
+ # audio_segments = []
633
+
634
+ # for chunk in chunks:
635
+ # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
636
+ # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
637
+ # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
638
+
639
+
640
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
641
+ # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
642
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
643
+
644
+ # combined_audio = sum(audio_segments)
645
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
646
+ # combined_audio.export(combined_audio_path, format="wav")
647
+
648
+ # logging.debug(f"Audio saved to {combined_audio_path}")
649
+ # return combined_audio_path
650
+
651
+ # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
652
+ # pipe.to(device)
653
+
654
+ # def generate_image(prompt):
655
+ # with torch.cuda.amp.autocast():
656
+ # image = pipe(
657
+ # prompt,
658
+ # num_inference_steps=28,
659
+ # guidance_scale=3.0,
660
+ # ).images[0]
661
+ # return image
662
+
663
+ # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
664
+ # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
665
+ # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
666
+
667
+ # def update_images():
668
+ # image_1 = generate_image(hardcoded_prompt_1)
669
+ # image_2 = generate_image(hardcoded_prompt_2)
670
+ # image_3 = generate_image(hardcoded_prompt_3)
671
+ # return image_1, image_2, image_3
672
+
673
+ # def clear_state_and_textbox():
674
+ # conversational_memory.clear()
675
+ # return "", ""
676
+
677
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
678
+ # with gr.Row():
679
+ # with gr.Column():
680
+ # state = gr.State()
681
+
682
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
683
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
684
+
685
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
686
+
687
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
688
+ # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
689
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
690
+ # retriver_button = gr.Button("Retriever")
691
+
692
+ # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
693
+ # location_output = gr.HTML()
694
+ # retriver_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
695
+ # fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
696
+ # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder").then(
697
+ # fn=clear_state_and_textbox, inputs=[], outputs=[chat_input]
698
+ # )
699
+
700
+ # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot], api_name="generate_voice_response")
701
+ # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
702
+ # chatbot.like(print_like_dislike, None, None)
703
+ # clear_button = gr.Button("Clear")
704
+ # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
705
+
706
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
707
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
708
+
709
+
710
+
711
+
712
+
713
+
714
+ # # with gr.Column():
715
+ # # weather_output = gr.HTML(value=fetch_local_weather())
716
+ # # news_output = gr.HTML(value=fetch_local_news())
717
+ # # news_output = gr.HTML(value=fetch_local_events())
718
+
719
+
720
+ # with gr.Column():
721
+ # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
722
+ # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
723
+ # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
724
+
725
+ # refresh_button = gr.Button("Refresh Images")
726
+ # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
727
+ # location_output = gr.HTML()
728
+ # bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
729
+
730
+
731
+
732
+ # demo.queue()
733
+ # demo.launch(share=True)
734
+
735
+
736
+
737
+
738
  import gradio as gr
739
  import requests
740
  import os
 
800
 
801
  current_time_and_date = get_current_time_and_date()
802
 
 
 
803
  def fetch_local_events():
 
 
804
  api_key = os.environ['SERP_API']
805
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
806
  response = requests.get(url)
 
863
  else:
864
  return "<p>Failed to fetch local events</p>"
865
 
 
 
 
866
  def fetch_local_weather():
867
  try:
868
  api_key = os.environ['WEATHER_API']
 
956
  Question: {question}
957
  Helpful Answer:"""
958
 
 
 
 
 
 
 
 
 
959
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
960
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
961
  Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
 
995
  )
996
  return agent
997
 
 
998
  def generate_answer(message, choice):
999
  logging.debug(f"generate_answer called with prompt_choice: {choice}")
1000
 
 
1010
  addresses = extract_addresses(response['output'])
1011
  return response['output'], addresses
1012
 
 
 
 
 
1013
  def bot(history, choice, tts_choice, state):
1014
  if not history:
1015
  return history
 
1036
  history.append((message, None))
1037
  return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
1038
 
 
 
1039
  def print_like_dislike(x: gr.LikeData):
1040
  print(x.index, x.value, x.liked)
1041
 
 
1061
 
1062
  all_addresses = []
1063
 
 
 
1064
  def generate_map(location_names):
1065
  global all_addresses
1066
  all_addresses.extend(location_names)
 
1075
  if geocode_result:
1076
  location = geocode_result[0]['geometry']['location']
1077
  folium.Marker(
1078
+ [location['lat'], 'location['lng']],
1079
  tooltip=f"{geocode_result[0]['formatted_address']}"
1080
  ).add_to(m)
1081
 
1082
  map_html = m._repr_html_()
1083
  return map_html
1084
 
 
1085
  def fetch_local_news():
1086
  api_key = os.environ['SERP_API']
1087
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
 
1170
 
1171
  base_audio_drive = "/data/audio"
1172
 
1173
+ # Integrate the transcriber function
1174
+ transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
 
1176
+ def transcribe(audio):
1177
+ sr, y = audio
1178
+ y = y.astype(np.float32)
1179
+ y /= np.max(np.abs(y))
1180
+ return transcriber({"sampling_rate": sr, "raw": y})["text"] # type: ignore
 
 
 
 
 
1181
 
1182
  def transcribe_function(stream, new_chunk):
1183
  sr, y = new_chunk[0], new_chunk[1]
1184
  y = y.astype(np.float32) / np.max(np.abs(y))
1185
+ if stream is not None:
1186
+ stream = np.concatenate([stream, y])
1187
+ else:
1188
+ stream = y
1189
  result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
1190
  full_text = result.get("text", "")
1191
  return stream, full_text # Return the transcribed text
1192
 
 
 
 
 
1193
  def update_map_with_response(history):
1194
  if not history:
1195
  return ""
 
1200
  def clear_textbox():
1201
  return ""
1202
 
1203
+ def show_map_if_details(history, choice):
1204
  if choice in ["Details", "Conversational"]:
1205
  return gr.update(visible=True), update_map_with_response(history)
1206
  else:
 
1333
  cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
1334
  ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
1335
 
 
1336
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
1337
  torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
1338
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
 
1380
 
1381
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1382
 
1383
+ chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt, click Retriever Only")
1384
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
1385
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1386
+ retriever_button = gr.Button("Retriever")
1387
 
1388
  gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
1389
  location_output = gr.HTML()
1390
+ retriever_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
1391
  fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
1392
  fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder").then(
1393
  fn=clear_state_and_textbox, inputs=[], outputs=[chat_input]
 
1400
  clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
1401
 
1402
  audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
1403
+ audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404
 
1405
+ # New integration
1406
+ transcribe_button = gr.Button("Transcribe")
1407
+ transcribe_output = gr.Textbox(show_label=False)
1408
+ transcribe_button.click(fn=transcribe, inputs=[audio_input], outputs=[transcribe_output])
1409
+ transcribe_output.submit(add_message, [chatbot, transcribe_output], [chatbot, chat_input], api_name="transcribe_and_ask")
1410
 
1411
  with gr.Column():
1412
  image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
 
1418
  location_output = gr.HTML()
1419
  bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
1420
 
 
 
1421
  demo.queue()
1422
  demo.launch(share=True)
1423
 
1424
+