Pijush2023 commited on
Commit
977e15f
·
verified ·
1 Parent(s): fbc0adf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +760 -75
app.py CHANGED
@@ -1,3 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import requests
3
  import os
@@ -63,11 +797,7 @@ def get_current_time_and_date():
63
 
64
  current_time_and_date = get_current_time_and_date()
65
 
66
-
67
-
68
  def fetch_local_events():
69
-
70
-
71
  api_key = os.environ['SERP_API']
72
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
  response = requests.get(url)
@@ -130,9 +860,6 @@ def fetch_local_events():
130
  else:
131
  return "<p>Failed to fetch local events</p>"
132
 
133
-
134
-
135
-
136
  def fetch_local_weather():
137
  try:
138
  api_key = os.environ['WEATHER_API']
@@ -226,14 +953,6 @@ event type and description.And also add this Birmingham,AL at the end of each ad
226
  Question: {question}
227
  Helpful Answer:"""
228
 
229
-
230
- # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
- # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
- # {context}
234
- # Question: {question}
235
- # Helpful Answer:"""
236
-
237
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
  Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
@@ -273,7 +992,6 @@ def initialize_agent_with_prompt(prompt_template):
273
  )
274
  return agent
275
 
276
-
277
  def generate_answer(message, choice):
278
  logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
 
@@ -289,10 +1007,6 @@ def generate_answer(message, choice):
289
  addresses = extract_addresses(response['output'])
290
  return response['output'], addresses
291
 
292
-
293
-
294
-
295
-
296
  def bot(history, choice, tts_choice, state):
297
  if not history:
298
  return history
@@ -319,8 +1033,6 @@ def add_message(history, message):
319
  history.append((message, None))
320
  return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
321
 
322
-
323
-
324
  def print_like_dislike(x: gr.LikeData):
325
  print(x.index, x.value, x.liked)
326
 
@@ -346,8 +1058,6 @@ def extract_addresses(response):
346
 
347
  all_addresses = []
348
 
349
-
350
-
351
  def generate_map(location_names):
352
  global all_addresses
353
  all_addresses.extend(location_names)
@@ -369,12 +1079,11 @@ def generate_map(location_names):
369
  map_html = m._repr_html_()
370
  return map_html
371
 
372
-
373
  def fetch_local_news():
374
  api_key = os.environ['SERP_API']
375
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
376
  response = requests.get(url)
377
- if response.status_code == 200:
378
  results = response.json().get("news_results", [])
379
  news_html = """
380
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
@@ -458,40 +1167,25 @@ pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=proce
458
 
459
  base_audio_drive = "/data/audio"
460
 
461
- def transcribe_function(stream, new_chunk):
462
- try:
463
- sr, y = new_chunk[0], new_chunk[1]
464
- except TypeError:
465
- print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
466
- return stream, "", None
467
 
468
- y = y.astype(np.float32) / np.max(np.abs(y))
 
 
 
 
469
 
 
 
 
470
  if stream is not None:
471
  stream = np.concatenate([stream, y])
472
  else:
473
  stream = y
474
-
475
  result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
476
-
477
- full_text = result.get("text","")
478
-
479
- return stream, full_text, result
480
-
481
-
482
- # def transcribe_function(stream, new_chunk):
483
- # sr, y = new_chunk[0], new_chunk[1]
484
- # y = y.astype(np.float32) / np.max(np.abs(y))
485
- # if stream is not None:
486
- # stream = np.concatenate([stream, y])
487
- # else:
488
- # stream = y
489
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
490
- # full_text = result.get("text", "")
491
- # return stream, full_text # Return the transcribed text
492
-
493
-
494
-
495
 
496
  def update_map_with_response(history):
497
  if not history:
@@ -503,7 +1197,7 @@ def update_map_with_response(history):
503
  def clear_textbox():
504
  return ""
505
 
506
- def show_map_if_details(history,choice):
507
  if choice in ["Details", "Conversational"]:
508
  return gr.update(visible=True), update_map_with_response(history)
509
  else:
@@ -636,7 +1330,6 @@ def generate_audio_mars5(text):
636
  cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
637
  ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
638
 
639
-
640
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
641
  torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
642
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
@@ -672,7 +1365,7 @@ def update_images():
672
 
673
  def clear_state_and_textbox():
674
  conversational_memory.clear()
675
- return ""
676
 
677
  with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
678
  with gr.Row():
@@ -684,14 +1377,14 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
684
 
685
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
686
 
687
- chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
688
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
689
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
690
- retriver_button = gr.Button("Retriever")
691
 
692
  gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
693
  location_output = gr.HTML()
694
- retriver_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
695
  fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
696
  fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder").then(
697
  fn=clear_state_and_textbox, inputs=[], outputs=[chat_input]
@@ -702,21 +1395,16 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
702
  chatbot.like(print_like_dislike, None, None)
703
  clear_button = gr.Button("Clear")
704
  clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
705
-
706
- audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
707
- audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
708
 
709
-
 
 
 
 
 
 
 
710
 
711
-
712
-
713
-
714
- with gr.Column():
715
- weather_output = gr.HTML(value=fetch_local_weather())
716
- news_output = gr.HTML(value=fetch_local_news())
717
- news_output = gr.HTML(value=fetch_local_events())
718
-
719
-
720
  with gr.Column():
721
  image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
722
  image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
@@ -727,11 +1415,8 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
727
  location_output = gr.HTML()
728
  bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
729
 
730
-
731
-
732
  demo.queue()
733
  demo.launch(share=True)
734
 
735
 
736
 
737
-
 
1
+ # import gradio as gr
2
+ # import requests
3
+ # import os
4
+ # import time
5
+ # import re
6
+ # import logging
7
+ # import tempfile
8
+ # import folium
9
+ # import concurrent.futures
10
+ # import torch
11
+ # from PIL import Image
12
+ # from datetime import datetime
13
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
+ # from googlemaps import Client as GoogleMapsClient
15
+ # from gtts import gTTS
16
+ # from diffusers import StableDiffusionPipeline
17
+ # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
+ # from langchain_pinecone import PineconeVectorStore
19
+ # from langchain.prompts import PromptTemplate
20
+ # from langchain.chains import RetrievalQA
21
+ # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
+ # from langchain.agents import Tool, initialize_agent
23
+ # from huggingface_hub import login
24
+ # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
+ # from parler_tts import ParlerTTSForConditionalGeneration
26
+ # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
+ # from scipy.io.wavfile import write as write_wav
28
+ # from pydub import AudioSegment
29
+ # from string import punctuation
30
+ # import librosa
31
+ # from pathlib import Path
32
+ # import torchaudio
33
+
34
+ # # Check if the token is already set in the environment variables
35
+ # hf_token = os.getenv("HF_TOKEN")
36
+ # if hf_token is None:
37
+ # print("Please set your Hugging Face token in the environment variables.")
38
+ # else:
39
+ # login(token=hf_token)
40
+
41
+ # logging.basicConfig(level=logging.DEBUG)
42
+
43
+ # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
+
45
+ # from pinecone import Pinecone
46
+ # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
+
48
+ # index_name = "birminghumsummary1"
49
+ # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
+ # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
+
52
+ # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
+
54
+ # conversational_memory = ConversationBufferWindowMemory(
55
+ # memory_key='chat_history',
56
+ # k=10,
57
+ # return_messages=True
58
+ # )
59
+
60
+ # def get_current_time_and_date():
61
+ # now = datetime.now()
62
+ # return now.strftime("%Y-%m-%d %H:%M:%S")
63
+
64
+ # current_time_and_date = get_current_time_and_date()
65
+
66
+
67
+
68
+ # def fetch_local_events():
69
+
70
+
71
+ # api_key = os.environ['SERP_API']
72
+ # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
73
+ # response = requests.get(url)
74
+ # if response.status_code == 200:
75
+ # events_results = response.json().get("events_results", [])
76
+ # events_html = """
77
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
78
+ # <style>
79
+ # table {
80
+ # font-family: 'Verdana', sans-serif;
81
+ # color: #333;
82
+ # border-collapse: collapse;
83
+ # width: 100%;
84
+ # }
85
+ # th, td {
86
+ # border: 1px solid #fff !important;
87
+ # padding: 8px;
88
+ # }
89
+ # th {
90
+ # background-color: #f2f2f2;
91
+ # color: #333;
92
+ # text-align: left;
93
+ # }
94
+ # tr:hover {
95
+ # background-color: #f5f5f5;
96
+ # }
97
+ # .event-link {
98
+ # color: #1E90FF;
99
+ # text-decoration: none;
100
+ # }
101
+ # .event-link:hover {
102
+ # text-decoration: underline;
103
+ # }
104
+ # </style>
105
+ # <table>
106
+ # <tr>
107
+ # <th>Title</th>
108
+ # <th>Date and Time</th>
109
+ # <th>Location</th>
110
+ # </tr>
111
+ # """
112
+ # for event in events_results:
113
+ # title = event.get("title", "No title")
114
+ # date_info = event.get("date", {})
115
+ # date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
116
+ # location = event.get("address", "No location")
117
+ # if isinstance(location, list):
118
+ # location = " ".join(location)
119
+ # location = location.replace("[", "").replace("]", "")
120
+ # link = event.get("link", "#")
121
+ # events_html += f"""
122
+ # <tr>
123
+ # <td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
124
+ # <td>{date}</td>
125
+ # <td>{location}</td>
126
+ # </tr>
127
+ # """
128
+ # events_html += "</table>"
129
+ # return events_html
130
+ # else:
131
+ # return "<p>Failed to fetch local events</p>"
132
+
133
+
134
+
135
+
136
+ # def fetch_local_weather():
137
+ # try:
138
+ # api_key = os.environ['WEATHER_API']
139
+ # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
140
+ # response = requests.get(url)
141
+ # response.raise_for_status()
142
+ # jsonData = response.json()
143
+
144
+ # current_conditions = jsonData.get("currentConditions", {})
145
+ # temp_celsius = current_conditions.get("temp", "N/A")
146
+
147
+ # if temp_celsius != "N/A":
148
+ # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
149
+ # else:
150
+ # temp_fahrenheit = "N/A"
151
+
152
+ # condition = current_conditions.get("conditions", "N/A")
153
+ # humidity = current_conditions.get("humidity", "N/A")
154
+
155
+ # weather_html = f"""
156
+ # <div class="weather-theme">
157
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
158
+ # <div class="weather-content">
159
+ # <div class="weather-icon">
160
+ # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
161
+ # </div>
162
+ # <div class="weather-details">
163
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
164
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
165
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
166
+ # </div>
167
+ # </div>
168
+ # </div>
169
+ # <style>
170
+ # .weather-theme {{
171
+ # animation: backgroundAnimation 10s infinite alternate;
172
+ # border-radius: 10px;
173
+ # padding: 10px;
174
+ # margin-bottom: 15px;
175
+ # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
176
+ # background-size: 400% 400%;
177
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
178
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
179
+ # }}
180
+ # .weather-theme:hover {{
181
+ # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
182
+ # background-position: 100% 100%;
183
+ # }}
184
+ # @keyframes backgroundAnimation {{
185
+ # 0% {{ background-position: 0% 50%; }}
186
+ # 100% {{ background-position: 100% 50%; }}
187
+ # }}
188
+ # .weather-content {{
189
+ # display: flex;
190
+ # align-items: center;
191
+ # }}
192
+ # .weather-icon {{
193
+ # flex: 1;
194
+ # }}
195
+ # .weather-details {{
196
+ # flex: 3;
197
+ # }}
198
+ # </style>
199
+ # """
200
+ # return weather_html
201
+ # except requests.exceptions.RequestException as e:
202
+ # return f"<p>Failed to fetch local weather: {e}</p>"
203
+
204
+ # def get_weather_icon(condition):
205
+ # condition_map = {
206
+ # "Clear": "c01d",
207
+ # "Partly Cloudy": "c02d",
208
+ # "Cloudy": "c03d",
209
+ # "Overcast": "c04d",
210
+ # "Mist": "a01d",
211
+ # "Patchy rain possible": "r01d",
212
+ # "Light rain": "r02d",
213
+ # "Moderate rain": "r03d",
214
+ # "Heavy rain": "r04d",
215
+ # "Snow": "s01d",
216
+ # "Thunderstorm": "t01d",
217
+ # "Fog": "a05d",
218
+ # }
219
+ # return condition_map.get(condition, "c04d")
220
+
221
+ # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
222
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
223
+ # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
224
+ # event type and description.And also add this Birmingham,AL at the end of each address, Always say "It was my pleasure!" at the end of the answer.
225
+ # {context}
226
+ # Question: {question}
227
+ # Helpful Answer:"""
228
+
229
+
230
+ # # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
231
+ # # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
232
+ # # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
233
+ # # {context}
234
+ # # Question: {question}
235
+ # # Helpful Answer:"""
236
+
237
+ # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
238
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
239
+ # Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
240
+ # {context}
241
+ # Question: {question}
242
+ # Helpful Answer:"""
243
+
244
+ # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
245
+ # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
246
+
247
+ # def build_qa_chain(prompt_template):
248
+ # qa_chain = RetrievalQA.from_chain_type(
249
+ # llm=chat_model,
250
+ # chain_type="stuff",
251
+ # retriever=retriever,
252
+ # chain_type_kwargs={"prompt": prompt_template}
253
+ # )
254
+ # tools = [
255
+ # Tool(
256
+ # name='Knowledge Base',
257
+ # func=qa_chain,
258
+ # description='Use this tool when answering general knowledge queries to get more information about the topic'
259
+ # )
260
+ # ]
261
+ # return qa_chain, tools
262
+
263
+ # def initialize_agent_with_prompt(prompt_template):
264
+ # qa_chain, tools = build_qa_chain(prompt_template)
265
+ # agent = initialize_agent(
266
+ # agent='chat-conversational-react-description',
267
+ # tools=tools,
268
+ # llm=chat_model,
269
+ # verbose=False,
270
+ # max_iteration=5,
271
+ # early_stopping_method='generate',
272
+ # memory=conversational_memory
273
+ # )
274
+ # return agent
275
+
276
+
277
+ # def generate_answer(message, choice):
278
+ # logging.debug(f"generate_answer called with prompt_choice: {choice}")
279
+
280
+ # if choice == "Details":
281
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
282
+ # elif choice == "Conversational":
283
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
284
+ # else:
285
+ # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
286
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
287
+ # response = agent(message)
288
+
289
+ # addresses = extract_addresses(response['output'])
290
+ # return response['output'], addresses
291
+
292
+
293
+
294
+
295
+
296
+ # def bot(history, choice, tts_choice, state):
297
+ # if not history:
298
+ # return history
299
+ # response, addresses = generate_answer(history[-1][0], choice)
300
+ # history[-1][1] = ""
301
+
302
+ # with concurrent.futures.ThreadPoolExecutor() as executor:
303
+ # if tts_choice == "Alpha":
304
+ # audio_future = executor.submit(generate_audio_elevenlabs, response)
305
+ # elif tts_choice == "Beta":
306
+ # audio_future = executor.submit(generate_audio_parler_tts, response)
307
+ # elif tts_choice == "Gamma":
308
+ # audio_future = executor.submit(generate_audio_mars5, response)
309
+
310
+ # for character in response:
311
+ # history[-1][1] += character
312
+ # time.sleep(0.05)
313
+ # yield history, None
314
+
315
+ # audio_path = audio_future.result()
316
+ # yield history, audio_path
317
+
318
+ # def add_message(history, message):
319
+ # history.append((message, None))
320
+ # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
321
+
322
+
323
+
324
+ # def print_like_dislike(x: gr.LikeData):
325
+ # print(x.index, x.value, x.liked)
326
+
327
+ # def extract_addresses(response):
328
+ # if not isinstance(response, str):
329
+ # response = str(response)
330
+ # address_patterns = [
331
+ # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
332
+ # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
333
+ # r'([A-Z].*,\sAL\s\d{5})',
334
+ # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
335
+ # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
336
+ # r'(\d{2}.*\sStreets)',
337
+ # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
338
+ # r'([a-zA-Z]\s Birmingham)',
339
+ # r'([a-zA-Z].*,\sBirmingham,\sAL)',
340
+ # r'(^Birmingham,AL$)'
341
+ # ]
342
+ # addresses = []
343
+ # for pattern in address_patterns:
344
+ # addresses.extend(re.findall(pattern, response))
345
+ # return addresses
346
+
347
+ # all_addresses = []
348
+
349
+
350
+
351
+ # def generate_map(location_names):
352
+ # global all_addresses
353
+ # all_addresses.extend(location_names)
354
+
355
+ # api_key = os.environ['GOOGLEMAPS_API_KEY']
356
+ # gmaps = GoogleMapsClient(key=api_key)
357
+
358
+ # m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
359
+
360
+ # for location_name in all_addresses:
361
+ # geocode_result = gmaps.geocode(location_name)
362
+ # if geocode_result:
363
+ # location = geocode_result[0]['geometry']['location']
364
+ # folium.Marker(
365
+ # [location['lat'], location['lng']],
366
+ # tooltip=f"{geocode_result[0]['formatted_address']}"
367
+ # ).add_to(m)
368
+
369
+ # map_html = m._repr_html_()
370
+ # return map_html
371
+
372
+
373
+ # def fetch_local_news():
374
+ # api_key = os.environ['SERP_API']
375
+ # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
376
+ # response = requests.get(url)
377
+ # if response.status_code == 200:
378
+ # results = response.json().get("news_results", [])
379
+ # news_html = """
380
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
381
+ # <style>
382
+ # .news-item {
383
+ # font-family: 'Verdana', sans-serif;
384
+ # color: #333;
385
+ # background-color: #f0f8ff;
386
+ # margin-bottom: 15px;
387
+ # padding: 10px;
388
+ # border-radius: 5px;
389
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
390
+ # font-weight: bold;
391
+ # }
392
+ # .news-item:hover {
393
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
394
+ # background-color: #e6f7ff;
395
+ # }
396
+ # .news-item a {
397
+ # color: #1E90FF;
398
+ # text-decoration: none;
399
+ # font-weight: bold;
400
+ # }
401
+ # .news-item a:hover {
402
+ # text-decoration: underline;
403
+ # }
404
+ # .news-preview {
405
+ # position: absolute;
406
+ # display: none;
407
+ # border: 1px solid #ccc;
408
+ # border-radius: 5px;
409
+ # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
410
+ # background-color: white;
411
+ # z-index: 1000;
412
+ # max-width: 300px;
413
+ # padding: 10px;
414
+ # font-family: 'Verdana', sans-serif;
415
+ # color: #333;
416
+ # }
417
+ # </style>
418
+ # <script>
419
+ # function showPreview(event, previewContent) {
420
+ # var previewBox = document.getElementById('news-preview');
421
+ # previewBox.innerHTML = previewContent;
422
+ # previewBox.style.left = event.pageX + 'px';
423
+ # previewBox.style.top = event.pageY + 'px';
424
+ # previewBox.style.display = 'block';
425
+ # }
426
+ # function hidePreview() {
427
+ # var previewBox = document.getElementById('news-preview');
428
+ # previewBox.style.display = 'none';
429
+ # }
430
+ # </script>
431
+ # <div id="news-preview" class="news-preview"></div>
432
+ # """
433
+ # for index, result in enumerate(results[:7]):
434
+ # title = result.get("title", "No title")
435
+ # link = result.get("link", "#")
436
+ # snippet = result.get("snippet", "")
437
+ # news_html += f"""
438
+ # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
439
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
440
+ # <p>{snippet}</p>
441
+ # </div>
442
+ # """
443
+ # return news_html
444
+ # else:
445
+ # return "<p>Failed to fetch local news</p>"
446
+
447
+ # import numpy as np
448
+ # import torch
449
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
450
+
451
+ # model_id = 'openai/whisper-large-v3'
452
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
453
+ # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
454
+ # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
455
+ # processor = AutoProcessor.from_pretrained(model_id)
456
+
457
+ # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
458
+
459
+ # base_audio_drive = "/data/audio"
460
+
461
+ # def transcribe_function(stream, new_chunk):
462
+ # try:
463
+ # sr, y = new_chunk[0], new_chunk[1]
464
+ # except TypeError:
465
+ # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
466
+ # return stream, "", None
467
+
468
+ # y = y.astype(np.float32) / np.max(np.abs(y))
469
+
470
+ # if stream is not None:
471
+ # stream = np.concatenate([stream, y])
472
+ # else:
473
+ # stream = y
474
+
475
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
476
+
477
+ # full_text = result.get("text","")
478
+
479
+ # return stream, full_text, result
480
+
481
+
482
+ # # def transcribe_function(stream, new_chunk):
483
+ # # sr, y = new_chunk[0], new_chunk[1]
484
+ # # y = y.astype(np.float32) / np.max(np.abs(y))
485
+ # # if stream is not None:
486
+ # # stream = np.concatenate([stream, y])
487
+ # # else:
488
+ # # stream = y
489
+ # # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
490
+ # # full_text = result.get("text", "")
491
+ # # return stream, full_text # Return the transcribed text
492
+
493
+
494
+
495
+
496
+ # def update_map_with_response(history):
497
+ # if not history:
498
+ # return ""
499
+ # response = history[-1][1]
500
+ # addresses = extract_addresses(response)
501
+ # return generate_map(addresses)
502
+
503
+ # def clear_textbox():
504
+ # return ""
505
+
506
+ # def show_map_if_details(history,choice):
507
+ # if choice in ["Details", "Conversational"]:
508
+ # return gr.update(visible=True), update_map_with_response(history)
509
+ # else:
510
+ # return gr.update(visible=False), ""
511
+
512
+ # def generate_audio_elevenlabs(text):
513
+ # XI_API_KEY = os.environ['ELEVENLABS_API']
514
+ # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
515
+ # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
516
+ # headers = {
517
+ # "Accept": "application/json",
518
+ # "xi-api-key": XI_API_KEY
519
+ # }
520
+ # data = {
521
+ # "text": str(text),
522
+ # "model_id": "eleven_multilingual_v2",
523
+ # "voice_settings": {
524
+ # "stability": 1.0,
525
+ # "similarity_boost": 0.0,
526
+ # "style": 0.60,
527
+ # "use_speaker_boost": False
528
+ # }
529
+ # }
530
+ # response = requests.post(tts_url, headers=headers, json=data, stream=True)
531
+ # if response.ok:
532
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
533
+ # for chunk in response.iter_content(chunk_size=1024):
534
+ # f.write(chunk)
535
+ # temp_audio_path = f.name
536
+ # logging.debug(f"Audio saved to {temp_audio_path}")
537
+ # return temp_audio_path
538
+ # else:
539
+ # logging.error(f"Error generating audio: {response.text}")
540
+ # return None
541
+
542
+ # repo_id = "parler-tts/parler-tts-mini-expresso"
543
+
544
+ # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
545
+ # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
546
+ # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
547
+
548
+ # SAMPLE_RATE = parler_feature_extractor.sampling_rate
549
+ # SEED = 42
550
+
551
+ # def preprocess(text):
552
+ # number_normalizer = EnglishNumberNormalizer()
553
+ # text = number_normalizer(text).strip()
554
+ # if text[-1] not in punctuation:
555
+ # text = f"{text}."
556
+
557
+ # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
558
+
559
+ # def separate_abb(chunk):
560
+ # chunk = chunk.replace(".", "")
561
+ # return " ".join(chunk)
562
+
563
+ # abbreviations = re.findall(abbreviations_pattern, text)
564
+ # for abv in abbreviations:
565
+ # if abv in text:
566
+ # text = text.replace(abv, separate_abb(abv))
567
+ # return text
568
+
569
+ # def chunk_text(text, max_length=250):
570
+ # words = text.split()
571
+ # chunks = []
572
+ # current_chunk = []
573
+ # current_length = 0
574
+
575
+ # for word in words:
576
+ # if current_length + len(word) + 1 <= max_length:
577
+ # current_chunk.append(word)
578
+ # current_length += len(word) + 1
579
+ # else:
580
+ # chunks.append(' '.join(current_chunk))
581
+ # current_chunk = [word]
582
+ # current_length = len(word) + 1
583
+
584
+ # if current_chunk:
585
+ # chunks.append(' '.join(current_chunk))
586
+
587
+ # return chunks
588
+
589
+ # def generate_audio_parler_tts(text):
590
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
591
+ # chunks = chunk_text(preprocess(text))
592
+ # audio_segments = []
593
+
594
+ # for chunk in chunks:
595
+ # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
596
+ # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
597
+
598
+ # set_seed(SEED)
599
+ # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
600
+ # audio_arr = generation.cpu().numpy().squeeze()
601
+
602
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
603
+ # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
604
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
605
+
606
+ # combined_audio = sum(audio_segments)
607
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
608
+ # combined_audio.export(combined_audio_path, format="wav")
609
+
610
+ # logging.debug(f"Audio saved to {combined_audio_path}")
611
+ # return combined_audio_path
612
+
613
+ # # Load the MARS5 model
614
+ # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
615
+
616
+ # def generate_audio_mars5(text):
617
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
618
+ # kwargs_dict = {
619
+ # 'temperature': 0.2,
620
+ # 'top_k': -1,
621
+ # 'top_p': 0.2,
622
+ # 'typical_p': 1.0,
623
+ # 'freq_penalty': 2.6,
624
+ # 'presence_penalty': 0.4,
625
+ # 'rep_penalty_window': 100,
626
+ # 'max_prompt_phones': 360,
627
+ # 'deep_clone': True,
628
+ # 'nar_guidance_w': 3
629
+ # }
630
+
631
+ # chunks = chunk_text(preprocess(text))
632
+ # audio_segments = []
633
+
634
+ # for chunk in chunks:
635
+ # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
636
+ # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
637
+ # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
638
+
639
+
640
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
641
+ # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
642
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
643
+
644
+ # combined_audio = sum(audio_segments)
645
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
646
+ # combined_audio.export(combined_audio_path, format="wav")
647
+
648
+ # logging.debug(f"Audio saved to {combined_audio_path}")
649
+ # return combined_audio_path
650
+
651
+ # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
652
+ # pipe.to(device)
653
+
654
+ # def generate_image(prompt):
655
+ # with torch.cuda.amp.autocast():
656
+ # image = pipe(
657
+ # prompt,
658
+ # num_inference_steps=28,
659
+ # guidance_scale=3.0,
660
+ # ).images[0]
661
+ # return image
662
+
663
+ # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Toyota coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
664
+ # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
665
+ # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
666
+
667
+ # def update_images():
668
+ # image_1 = generate_image(hardcoded_prompt_1)
669
+ # image_2 = generate_image(hardcoded_prompt_2)
670
+ # image_3 = generate_image(hardcoded_prompt_3)
671
+ # return image_1, image_2, image_3
672
+
673
+ # def clear_state_and_textbox():
674
+ # conversational_memory.clear()
675
+ # return ""
676
+
677
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
678
+ # with gr.Row():
679
+ # with gr.Column():
680
+ # state = gr.State()
681
+
682
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
683
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
684
+
685
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
686
+
687
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="After Prompt,click Retriever Only")
688
+ # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
689
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
690
+ # retriver_button = gr.Button("Retriever")
691
+
692
+ # gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
693
+ # location_output = gr.HTML()
694
+ # retriver_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
695
+ # fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
696
+ # fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder").then(
697
+ # fn=clear_state_and_textbox, inputs=[], outputs=[chat_input]
698
+ # )
699
+
700
+ # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot], api_name="generate_voice_response")
701
+ # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
702
+ # chatbot.like(print_like_dislike, None, None)
703
+ # clear_button = gr.Button("Clear")
704
+ # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
705
+
706
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
707
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
708
+
709
+
710
+
711
+
712
+
713
+
714
+ # with gr.Column():
715
+ # weather_output = gr.HTML(value=fetch_local_weather())
716
+ # news_output = gr.HTML(value=fetch_local_news())
717
+ # news_output = gr.HTML(value=fetch_local_events())
718
+
719
+
720
+ # with gr.Column():
721
+ # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
722
+ # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
723
+ # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
724
+
725
+ # refresh_button = gr.Button("Refresh Images")
726
+ # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
727
+ # location_output = gr.HTML()
728
+ # bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
729
+
730
+
731
+
732
+ # demo.queue()
733
+ # demo.launch(share=True)
734
+
735
  import gradio as gr
736
  import requests
737
  import os
 
797
 
798
  current_time_and_date = get_current_time_and_date()
799
 
 
 
800
  def fetch_local_events():
 
 
801
  api_key = os.environ['SERP_API']
802
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
803
  response = requests.get(url)
 
860
  else:
861
  return "<p>Failed to fetch local events</p>"
862
 
 
 
 
863
  def fetch_local_weather():
864
  try:
865
  api_key = os.environ['WEATHER_API']
 
953
  Question: {question}
954
  Helpful Answer:"""
955
 
 
 
 
 
 
 
 
 
956
  template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 16th july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
957
  memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
958
  Keep the answer short ,sweet and crisp and in one shot. Always say "It was my pleasure!" at the end of the answer.
 
992
  )
993
  return agent
994
 
 
995
  def generate_answer(message, choice):
996
  logging.debug(f"generate_answer called with prompt_choice: {choice}")
997
 
 
1007
  addresses = extract_addresses(response['output'])
1008
  return response['output'], addresses
1009
 
 
 
 
 
1010
  def bot(history, choice, tts_choice, state):
1011
  if not history:
1012
  return history
 
1033
  history.append((message, None))
1034
  return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
1035
 
 
 
1036
  def print_like_dislike(x: gr.LikeData):
1037
  print(x.index, x.value, x.liked)
1038
 
 
1058
 
1059
  all_addresses = []
1060
 
 
 
1061
  def generate_map(location_names):
1062
  global all_addresses
1063
  all_addresses.extend(location_names)
 
1079
  map_html = m._repr_html_()
1080
  return map_html
1081
 
 
1082
  def fetch_local_news():
1083
  api_key = os.environ['SERP_API']
1084
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
1085
  response = requests.get(url)
1086
+ if response.status_code == 200):
1087
  results = response.json().get("news_results", [])
1088
  news_html = """
1089
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
 
1167
 
1168
  base_audio_drive = "/data/audio"
1169
 
1170
+ # Integrate the transcriber function
1171
+ transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
 
 
 
 
1172
 
1173
+ def transcribe(audio):
1174
+ sr, y = audio
1175
+ y = y.astype(np.float32)
1176
+ y /= np.max(np.abs(y))
1177
+ return transcriber({"sampling_rate": sr, "raw": y})["text"] # type: ignore
1178
 
1179
+ def transcribe_function(stream, new_chunk):
1180
+ sr, y = new_chunk[0], new_chunk[1]
1181
+ y = y.astype(np.float32) / np.max(np.abs(y))
1182
  if stream is not None:
1183
  stream = np.concatenate([stream, y])
1184
  else:
1185
  stream = y
 
1186
  result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
1187
+ full_text = result.get("text", "")
1188
+ return stream, full_text # Return the transcribed text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189
 
1190
  def update_map_with_response(history):
1191
  if not history:
 
1197
  def clear_textbox():
1198
  return ""
1199
 
1200
+ def show_map_if_details(history, choice):
1201
  if choice in ["Details", "Conversational"]:
1202
  return gr.update(visible=True), update_map_with_response(history)
1203
  else:
 
1330
  cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
1331
  ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
1332
 
 
1333
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
1334
  torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
1335
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
 
1365
 
1366
  def clear_state_and_textbox():
1367
  conversational_memory.clear()
1368
+ return "", ""
1369
 
1370
  with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1371
  with gr.Row():
 
1377
 
1378
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1379
 
1380
+ chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="After Prompt, click Retriever Only")
1381
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input], api_name="voice_query")
1382
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1383
+ retriever_button = gr.Button("Retriever")
1384
 
1385
  gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
1386
  location_output = gr.HTML()
1387
+ retriever_button.click(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input]).then(
1388
  fn=bot, inputs=[chatbot, choice, tts_choice, state], outputs=[chatbot, gr.Audio(interactive=False, autoplay=True)], api_name="Ask_Retriever").then(
1389
  fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder").then(
1390
  fn=clear_state_and_textbox, inputs=[], outputs=[chat_input]
 
1395
  chatbot.like(print_like_dislike, None, None)
1396
  clear_button = gr.Button("Clear")
1397
  clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
 
 
 
1398
 
1399
+ # Recorder section
1400
+ with gr.Group():
1401
+ gr.Markdown("<h2>Audio Recorder</h2>")
1402
+ audio_input = gr.Audio(sources=["microphone"], type='numpy')
1403
+ transcribe_button = gr.Button("Transcribe")
1404
+ transcribe_output = gr.Textbox(show_label=False, placeholder="Transcribed text will appear here...")
1405
+ transcribe_button.click(fn=transcribe, inputs=[audio_input], outputs=[transcribe_output])
1406
+ transcribe_output.submit(add_message, [chatbot, transcribe_output], [chatbot, chat_input])
1407
 
 
 
 
 
 
 
 
 
 
1408
  with gr.Column():
1409
  image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
1410
  image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
 
1415
  location_output = gr.HTML()
1416
  bot_msg.then(show_map_if_details, [chatbot, choice], [location_output, location_output], api_name="map_finder")
1417
 
 
 
1418
  demo.queue()
1419
  demo.launch(share=True)
1420
 
1421
 
1422