import streamlit as st from tensorflow.keras.models import load_model from sklearn.feature_extraction.text import CountVectorizer from textblob import TextBlob from nltk.stem import PorterStemmer import numpy as np pr=PorterStemmer() def lemmafn(text): words=TextBlob(text).words return [pr.stem(word) for word in words] vect=CountVectorizer(stop_words="english",ngram_range=(1,3),max_features=10000) model=load_model("essay_model.h5") st.title("Predict Essayss Scores") essay=st.text_area("Essay") if essay is not None: essay=essay.lower() essay=essay.replace("[^\w\s]","",) essay=essay.replace("\d+","") essay=essay.replace("\n","") essay=[essay] if st.button("Predict"): data=vect.fit_transform(essay) prediction=model.predict(data) predicted_class=np.argmax(prediction) st.write(predicted_class)