Spaces:
Sleeping
Sleeping
Mehmet Emin Aydin
commited on
Create app.py
Browse filesMain project architecture implemented
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
import requests
|
7 |
+
import subprocess
|
8 |
+
import atexit
|
9 |
+
import os
|
10 |
+
import signal
|
11 |
+
import os
|
12 |
+
import PyPDF2
|
13 |
+
from docx import Document
|
14 |
+
from fastapi import UploadFile, FastAPI, File, Form, UploadFile, HTTPException
|
15 |
+
from langchain.text_splitter import CharacterTextSplitter
|
16 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
17 |
+
from langchain_community.vectorstores import FAISS
|
18 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
19 |
+
import pickle
|
20 |
+
from datetime import datetime
|
21 |
+
import io
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
class User:
|
24 |
+
def __init__(self, username):
|
25 |
+
self.username = username
|
26 |
+
self.llm = "gemini-pro"
|
27 |
+
self.embedder = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
28 |
+
|
29 |
+
async def upload_documents(user: User, files: list[UploadFile]) -> tuple[str, int]:
|
30 |
+
text = await _extract_text_from_document(files)
|
31 |
+
chunks = await _chunk_text(text)
|
32 |
+
pkl_name, status_code = await _create_embeddings_and_save(user, chunks)
|
33 |
+
if status_code == 200:
|
34 |
+
return "Document uploaded successfully.", 200
|
35 |
+
else:
|
36 |
+
return "Failed to upload document.", 500
|
37 |
+
|
38 |
+
async def _extract_text_from_document(files: list[UploadFile]) -> str:
|
39 |
+
text = ""
|
40 |
+
for file in files:
|
41 |
+
byte_object = await file.read()
|
42 |
+
file_name = file.filename
|
43 |
+
file_extension = os.path.splitext(file_name)[1]
|
44 |
+
if file_extension == '.txt':
|
45 |
+
text += byte_object.decode('utf-8')
|
46 |
+
elif file_extension == '.pdf':
|
47 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(byte_object))
|
48 |
+
for page_number in range(len(pdf_reader.pages)):
|
49 |
+
page = pdf_reader.pages[page_number]
|
50 |
+
text += page.extract_text()
|
51 |
+
elif file_extension == '.docx':
|
52 |
+
doc = Document(io.BytesIO(byte_object))
|
53 |
+
for paragraph in doc.paragraphs:
|
54 |
+
text += paragraph.text + "\n"
|
55 |
+
return text
|
56 |
+
|
57 |
+
async def _chunk_text(text: str) -> list[str]:
|
58 |
+
chunks = None
|
59 |
+
text_splitter = CharacterTextSplitter(
|
60 |
+
separator="\n",
|
61 |
+
chunk_size=512,
|
62 |
+
chunk_overlap=10,
|
63 |
+
length_function=len
|
64 |
+
)
|
65 |
+
chunks = text_splitter.split_text(text)
|
66 |
+
return chunks
|
67 |
+
|
68 |
+
async def _create_embeddings_and_save(user: User, chunks: any) -> FAISS:
|
69 |
+
embeddings = HuggingFaceEmbeddings(model_name=user.embedder)
|
70 |
+
pkl_name = os.path.join(user.username + ".pkl")
|
71 |
+
vector_store = FAISS.from_texts(chunks, embeddings, metadatas=[{"source": f"{pkl_name}:{i}"} for i in range(len(chunks))])
|
72 |
+
with open(pkl_name, "wb") as f:
|
73 |
+
pickle.dump(vector_store, f)
|
74 |
+
return vector_store
|
75 |
+
|
76 |
+
async def ask_question(user: User, question: str, api_key: str) -> tuple[str, int]:
|
77 |
+
username = user.username
|
78 |
+
vector_store = await _get_vector_file(username)
|
79 |
+
if vector_store is None:
|
80 |
+
return "Document not found.", 400
|
81 |
+
|
82 |
+
if api_key is not None:
|
83 |
+
os.environ["GOOGLE_API_KEY"] = api_key
|
84 |
+
else:
|
85 |
+
is_loaded = load_dotenv()
|
86 |
+
if is_loaded == False:
|
87 |
+
return "API key not found.", 400
|
88 |
+
|
89 |
+
llm = ChatGoogleGenerativeAI(model=user.llm, temperature=0, max_output_tokens=256, top_k = 40, top_p = 0.8)
|
90 |
+
docs = vector_store.similarity_search(question)
|
91 |
+
retrieved_chunks = docs[0].page_content + docs[1].page_content + docs[2].page_content
|
92 |
+
system_message="Figure out the answer of the question by the given information pieces. ALWAYS answer with the language of the question."
|
93 |
+
prompt = system_message + "Question: " + question + " Context: " + retrieved_chunks
|
94 |
+
try:
|
95 |
+
response = llm.invoke(prompt)
|
96 |
+
except Exception:
|
97 |
+
return "Wrong API key.", 400
|
98 |
+
answer = response.content + " **<Most Related Chunk>** " + retrieved_chunks
|
99 |
+
await _log(user, question, system_message, retrieved_chunks, response.content)
|
100 |
+
return answer, 200
|
101 |
+
|
102 |
+
async def _get_vector_file(username: str)-> any:
|
103 |
+
with open(username+".pkl", "rb") as f:
|
104 |
+
vector_store = pickle.load(f)
|
105 |
+
return vector_store
|
106 |
+
|
107 |
+
async def _log(user: User, question: str, system_message: str, retrieved_chunks: str, answer: str):
|
108 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
109 |
+
log_message = (
|
110 |
+
f"{timestamp}, Username: {user.username}, Question: {question}, "
|
111 |
+
f"LLM: {user.llm}, Embedder: {user.embedder}, System Message: {system_message}, "
|
112 |
+
f"Retrieved Texts: {retrieved_chunks}, Answer: {answer}\n"
|
113 |
+
)
|
114 |
+
with open("log.txt", "a", encoding="utf-8") as file:
|
115 |
+
file.write(log_message)
|
116 |
+
|
117 |
+
|
118 |
+
app = FastAPI()
|
119 |
+
@app.post("/document-uploader")
|
120 |
+
async def document_uploader(username: str = Form(...), files: list[UploadFile] = File(...)):
|
121 |
+
user = User(username=username)
|
122 |
+
response, status_code = await upload_documents(user, files)
|
123 |
+
if status_code == 200:
|
124 |
+
return {response}
|
125 |
+
else:
|
126 |
+
raise HTTPException(status_code=status_code, detail=response)
|
127 |
+
|
128 |
+
@app.post("/question-answerer")
|
129 |
+
async def question_answerer(username: str = Form(...), question: str = Form(...), api_key = File(None)):
|
130 |
+
user = User(username=username)
|
131 |
+
response, status_code = await ask_question(user, question, api_key)
|
132 |
+
if status_code == 200:
|
133 |
+
return {response}
|
134 |
+
else:
|
135 |
+
raise HTTPException(status_code=status_code, detail=response)
|
136 |
+
|
137 |
+
|
138 |
+
def main():
|
139 |
+
st.title("Free Multilingual RAG")
|
140 |
+
|
141 |
+
tabs = ["Upload Document", "Ask Question"]
|
142 |
+
active_tab = st.radio("Upload documents first, ask questions later:", tabs)
|
143 |
+
|
144 |
+
if active_tab == "Upload Document":
|
145 |
+
upload_document()
|
146 |
+
elif active_tab == "Ask Question":
|
147 |
+
ask_question()
|
148 |
+
|
149 |
+
def upload_document():
|
150 |
+
st.write("Several files can be uploaded, each upload crushes the old one. Depending on the number and size of files, the upload process may take a long time.")
|
151 |
+
|
152 |
+
username = st.text_input("Enter a username (just something that represents you):")
|
153 |
+
uploaded_files = st.file_uploader("Upload your documents (for now it only works with files that has .txt, .pdf or .docx extension):", accept_multiple_files=True)
|
154 |
+
|
155 |
+
if uploaded_files:
|
156 |
+
st.write("Number of uploaded files:", len(uploaded_files))
|
157 |
+
|
158 |
+
for uploaded_file in uploaded_files:
|
159 |
+
file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type, "FileSize": uploaded_file.size}
|
160 |
+
st.write(file_details)
|
161 |
+
|
162 |
+
files = [("files", (uploaded_file.name, uploaded_file, uploaded_file.type)) for uploaded_file in uploaded_files]
|
163 |
+
|
164 |
+
payload = {'username': username}
|
165 |
+
|
166 |
+
with st.spinner('Loading...'):
|
167 |
+
response = requests.post("http://localhost:8000/document-uploader/", files=files, data=payload)
|
168 |
+
|
169 |
+
if response.status_code == 200:
|
170 |
+
st.success(response.text)
|
171 |
+
else:
|
172 |
+
st.error("Error:", response.text)
|
173 |
+
|
174 |
+
|
175 |
+
def ask_question():
|
176 |
+
username = st.text_input("Enter a username (just something that represents you):")
|
177 |
+
api_key = st.text_input("Add your Google API key. It is free. Key acquisition video: [https://www.youtube.com/watch?v=brCkpzAD0gc]: (If you do not trust you can download and use the app in your local too)", type="password")
|
178 |
+
question = st.text_area("Enter the question you want to ask in your document (the more detailed your question, the more accurate an answer you will get): ")
|
179 |
+
|
180 |
+
if st.button("Ask"):
|
181 |
+
if not question:
|
182 |
+
st.warning("Please enter a question.")
|
183 |
+
elif not username:
|
184 |
+
st.warning("Please enter a username.")
|
185 |
+
else:
|
186 |
+
payload = {'username': username, 'question': question, 'api_key': api_key}
|
187 |
+
|
188 |
+
with st.spinner('Question is getting answered...'):
|
189 |
+
response = requests.post("http://localhost:8000/question-answerer/", data=payload)
|
190 |
+
|
191 |
+
if response.status_code == 200:
|
192 |
+
st.success("Answer: " + response.text)
|
193 |
+
else:
|
194 |
+
print(response)
|
195 |
+
st.error("Error:", response.text)
|
196 |
+
|
197 |
+
uvicorn_process = None
|
198 |
+
|
199 |
+
def run_fastapi():
|
200 |
+
global uvicorn_process
|
201 |
+
if uvicorn_process is None:
|
202 |
+
uvicorn_process = subprocess.Popen(["uvicorn", "app:app", "--host", "127.0.0.1", "--port", "8000"])
|
203 |
+
print("FastAPI server has been started.")
|
204 |
+
|
205 |
+
def cleanup():
|
206 |
+
global uvicorn_process
|
207 |
+
if uvicorn_process:
|
208 |
+
os.kill(uvicorn_process.pid, signal.SIGTERM)
|
209 |
+
uvicorn_process.wait()
|
210 |
+
print("FastAPI server has been closed.")
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
run_fastapi()
|
214 |
+
atexit.register(cleanup)
|
215 |
+
main()
|