|
import gradio as gr |
|
import subprocess |
|
import spaces |
|
import torch |
|
import os |
|
import re |
|
|
|
zero = torch.Tensor([0]).cuda() |
|
print(zero.device) |
|
|
|
@spaces.GPU |
|
def run_evaluation(model_name): |
|
print(zero.device) |
|
|
|
results = [] |
|
|
|
|
|
if "HF_TOKEN" not in os.environ: |
|
return "Error: HF_TOKEN not found in environment variables." |
|
|
|
manifest_process = None |
|
try: |
|
|
|
manifest_cmd = f""" |
|
cd duckdb-nsql/ && |
|
CUDA_VISIBLE_DEVICES=0 HF_TOKEN={os.environ['HF_TOKEN']} python -m manifest.api.app \ |
|
--model_type huggingface \ |
|
--model_generation_type text-generation \ |
|
--model_name_or_path {model_name} \ |
|
--fp16 \ |
|
--device 0 |
|
""" |
|
manifest_process = subprocess.Popen(manifest_cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) |
|
results.append("Started manifest server in background.") |
|
|
|
|
|
inference_cmd = f""" |
|
cd duckdb-nsql/ && |
|
python eval/predict.py \ |
|
predict \ |
|
eval/data/dev.json \ |
|
eval/data/tables.json \ |
|
--output-dir output/ \ |
|
--stop-tokens ';' \ |
|
--overwrite-manifest \ |
|
--manifest-client huggingface \ |
|
--manifest-connection http://localhost:5000 \ |
|
--prompt-format duckdbinstgraniteshort |
|
""" |
|
inference_result = subprocess.run(inference_cmd, shell=True, check=True, capture_output=True, text=True) |
|
results.append("Inference completed.") |
|
|
|
|
|
json_path_match = re.search(r'(.*\.json)', inference_result.stdout) |
|
if not json_path_match: |
|
raise ValueError("Could not find JSON file path in inference output") |
|
json_file = os.path.basename(json_path_match.group(1)) |
|
results.append(f"Generated JSON file: {json_file}") |
|
|
|
|
|
eval_cmd = f""" |
|
cd duckdb-nsql/ && |
|
python eval/evaluate.py evaluate \ |
|
--gold eval/data/dev.json \ |
|
--db eval/data/databases/ \ |
|
--tables eval/data/tables.json \ |
|
--output-dir output/ \ |
|
--pred output/{json_file} |
|
""" |
|
eval_result = subprocess.run(eval_cmd, shell=True, check=True, capture_output=True, text=True) |
|
|
|
|
|
metrics = eval_result.stdout |
|
if metrics: |
|
results.append(f"Evaluation completed:\n{metrics}") |
|
else: |
|
results.append("Evaluation completed, but get metrics.") |
|
|
|
except subprocess.CalledProcessError as e: |
|
results.append(f"Error occurred: {str(e)}") |
|
results.append(f"Command output: {e.output}") |
|
except Exception as e: |
|
results.append(f"An unexpected error occurred: {str(e)}") |
|
finally: |
|
|
|
if manifest_process: |
|
manifest_process.terminate() |
|
results.append("Terminated manifest server.") |
|
|
|
return "\n\n".join(results) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# DuckDB SQL Evaluation App") |
|
|
|
model_name = gr.Textbox(label="Model Name (e.g., Qwen/Qwen2.5-7B-Instruct)") |
|
start_btn = gr.Button("Start Evaluation") |
|
output = gr.Textbox(label="Output", lines=20) |
|
|
|
start_btn.click(fn=run_evaluation, inputs=[model_name], outputs=output) |
|
|
|
demo.launch() |