import gradio as gr import networkx as nx import matplotlib.pyplot as plt from io import BytesIO # Initialize the lesson plan graph lesson_graph = nx.DiGraph() def add_to_graph(teacher_name, subject, grade_level, learning_objective, activity, assessment, resource, school_board): global lesson_graph # Add nodes to the graph lesson_graph.add_node(teacher_name, type="User") lesson_graph.add_node(subject, type="Subject") lesson_graph.add_node(grade_level, type="Grade Level") lesson_graph.add_node(learning_objective, type="Learning Objective") lesson_graph.add_node(activity, type="Activity") lesson_graph.add_node(assessment, type="Assessment") lesson_graph.add_node(resource, type="Resource") lesson_graph.add_node(school_board, type="School Board") # Add edges to the graph lesson_graph.add_edge(teacher_name, subject, relationship="TEACHES") lesson_graph.add_edge(subject, learning_objective, relationship="COVERS") lesson_graph.add_edge(subject, grade_level, relationship="HAS_GRADE") lesson_graph.add_edge(activity, learning_objective, relationship="ACHIEVES") lesson_graph.add_edge(activity, resource, relationship="REQUIRES") lesson_graph.add_edge(learning_objective, assessment, relationship="EVALUATED_BY") lesson_graph.add_edge(teacher_name, school_board, relationship="BELONGS_TO") lesson_graph.add_edge(learning_objective, school_board, relationship="ALIGNS_WITH") # Generate search string search_string = f"{subject} {grade_level} {learning_objective} {activity} {resource}".strip() # Visualize the graph plt.figure(figsize=(12, 8)) pos = nx.spring_layout(lesson_graph) nx.draw(lesson_graph, pos, with_labels=True, node_color="lightblue", font_size=8, font_weight="bold", node_size=3000, node_shape="o") # Add node labels labels = nx.get_node_attributes(lesson_graph, 'type') nx.draw_networkx_labels(lesson_graph, pos, labels, font_size=6) # Add edge labels edge_labels = nx.get_edge_attributes(lesson_graph, 'relationship') nx.draw_networkx_edge_labels(lesson_graph, pos, edge_labels=edge_labels, font_size=6) # Save the plot to a bytes object buf = BytesIO() plt.savefig(buf, format="png", dpi=300, bbox_inches="tight") buf.seek(0) plt.close() return search_string, buf def clear_graph(): global lesson_graph lesson_graph.clear() return "Canvas cleared. You can start a new lesson plan." # Gradio interface demo = gr.Blocks() with demo: gr.Markdown("# EduCanvas: Craft Your Lesson Masterpiece") gr.Markdown("Welcome to EduCanvas, where lesson planning becomes an art. Design, visualize, and perfect your educational masterpieces with ease.") with gr.Row(): teacher_name = gr.Textbox(label="Teacher Name") school_board = gr.Textbox(label="School Board/Region") with gr.Row(): subject = gr.Textbox(label="Subject") grade_level = gr.Textbox(label="Grade Level") with gr.Row(): learning_objective = gr.Textbox(label="Learning Objective") activity = gr.Textbox(label="Activity") with gr.Row(): assessment = gr.Textbox(label="Assessment") resource = gr.Textbox(label="Resource/Material") with gr.Row(): generate_btn = gr.Button("Paint Your Lesson Plan") clear_btn = gr.Button("Clear Canvas") search_output = gr.Textbox(label="Content Discovery Search String") graph_output = gr.Image(label="Your Lesson Masterpiece") message_output = gr.Textbox(label="Canvas Status") generate_btn.click( add_to_graph, inputs=[teacher_name, subject, grade_level, learning_objective, activity, assessment, resource, school_board], outputs=[search_output, graph_output] ) clear_btn.click(clear_graph, outputs=message_output) # Launch the EduCanvas app demo.launch()