Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,459 Bytes
769de07 a70baab 769de07 a70baab 769de07 6f18403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from config import (
MODEL,
MIN_IMAGE_SIZE,
MAX_IMAGE_SIZE,
USE_TORCH_COMPILE,
ENABLE_CPU_OFFLOAD,
OUTPUT_DIR,
DEFAULT_NEGATIVE_PROMPT,
DEFAULT_ASPECT_RATIO,
examples,
sampler_list,
aspect_ratios,
style_list,
)
import time
from typing import List, Dict, Tuple, Optional
# Enhanced logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Constants
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
# PyTorch settings for better performance and determinism
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
class GenerationError(Exception):
"""Custom exception for generation errors"""
pass
def validate_prompt(prompt: str) -> str:
"""Validate and clean up the input prompt."""
if not isinstance(prompt, str):
raise GenerationError("Prompt must be a string")
try:
# Ensure proper UTF-8 encoding/decoding
prompt = prompt.encode('utf-8').decode('utf-8')
# Add space between ! and ,
prompt = prompt.replace("!,", "! ,")
except UnicodeError:
raise GenerationError("Invalid characters in prompt")
# Only check if the prompt is completely empty or only whitespace
if not prompt or prompt.isspace():
raise GenerationError("Prompt cannot be empty")
return prompt.strip()
def validate_dimensions(width: int, height: int) -> None:
"""Validate image dimensions."""
if not MIN_IMAGE_SIZE <= width <= MAX_IMAGE_SIZE:
raise GenerationError(f"Width must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
if not MIN_IMAGE_SIZE <= height <= MAX_IMAGE_SIZE:
raise GenerationError(f"Height must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE}")
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = DEFAULT_NEGATIVE_PROMPT,
seed: int = 0,
custom_width: int = 1024,
custom_height: int = 1024,
guidance_scale: float = 6.0,
num_inference_steps: int = 25,
sampler: str = "Euler a",
aspect_ratio_selector: str = DEFAULT_ASPECT_RATIO,
style_selector: str = "(None)",
use_upscaler: bool = False,
upscaler_strength: float = 0.55,
upscale_by: float = 1.5,
add_quality_tags: bool = True,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[List[str], Dict]:
"""Generate images based on the given parameters."""
start_time = time.time()
upscaler_pipe = None
backup_scheduler = None
try:
# Memory management
torch.cuda.empty_cache()
gc.collect()
# Input validation
prompt = validate_prompt(prompt)
if negative_prompt:
negative_prompt = negative_prompt.encode('utf-8').decode('utf-8')
validate_dimensions(custom_width, custom_height)
# Set up generation
generator = utils.seed_everything(seed)
width, height = utils.aspect_ratio_handler(
aspect_ratio_selector,
custom_width,
custom_height,
)
# Process prompts
if add_quality_tags:
prompt = "masterpiece, high score, great score, absurdres, {prompt}".format(prompt=prompt)
prompt, negative_prompt = utils.preprocess_prompt(
styles, style_selector, prompt, negative_prompt
)
width, height = utils.preprocess_image_dimensions(width, height)
# Set up pipeline
backup_scheduler = pipe.scheduler
pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)
if use_upscaler:
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
# Prepare metadata
metadata = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"resolution": f"{width} x {height}",
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"style_preset": style_selector,
"seed": seed,
"sampler": sampler,
"Model": "Animagine XL 4.0",
"Model hash": "e3c47aedb0",
}
if use_upscaler:
new_width = int(width * upscale_by)
new_height = int(height * upscale_by)
metadata["use_upscaler"] = {
"upscale_method": "nearest-exact",
"upscaler_strength": upscaler_strength,
"upscale_by": upscale_by,
"new_resolution": f"{new_width} x {new_height}",
}
else:
metadata["use_upscaler"] = None
logger.info(f"Starting generation with parameters: {json.dumps(metadata, indent=4)}")
# Generate images
if use_upscaler:
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="latent",
).images
upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
images = upscaler_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=upscaled_latents,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=upscaler_strength,
generator=generator,
output_type="pil",
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images
# Save images
if images:
total = len(images)
image_paths = []
for idx, image in enumerate(images, 1):
progress(idx/total, desc="Saving images...")
path = utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB)
image_paths.append(path)
logger.info(f"Image {idx}/{total} saved as {path}")
generation_time = time.time() - start_time
logger.info(f"Generation completed successfully in {generation_time:.2f} seconds")
metadata["generation_time"] = f"{generation_time:.2f}s"
return image_paths, metadata
except GenerationError as e:
logger.warning(f"Generation validation error: {str(e)}")
raise gr.Error(str(e))
except Exception as e:
logger.exception("Unexpected error during generation")
raise gr.Error(f"Generation failed: {str(e)}")
finally:
# Cleanup
torch.cuda.empty_cache()
gc.collect()
if upscaler_pipe is not None:
del upscaler_pipe
if backup_scheduler is not None and pipe is not None:
pipe.scheduler = backup_scheduler
utils.free_memory()
# Model initialization
if torch.cuda.is_available():
try:
logger.info("Loading VAE and pipeline...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = utils.load_pipeline(MODEL, device, vae=vae)
logger.info("Pipeline loaded successfully on GPU!")
except Exception as e:
logger.error(f"Error loading VAE, falling back to default: {e}")
pipe = utils.load_pipeline(MODEL, device)
else:
logger.warning("CUDA not available, running on CPU")
pipe = None
# Process styles
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
with gr.Blocks(css="style.css", theme="Nymbo/Nymbo_Theme_5") as demo:
gr.HTML(
"""
<div class="header">
<div class="title">ANIM4GINE</div>
<div class="subtitle">Gradio demo for <a href="https://huggingface.co/CagliostroLab/Animagine-XL-4.0" target="_blank">Animagine XL 4.0</a></div>
</div>
""",
)
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Describe what you want to generate",
info="Enter your image generation prompt here. Be specific and descriptive for better results.",
)
negative_prompt = gr.Text(
label="Negative Prompt",
max_lines=5,
placeholder="Describe what you want to avoid",
value=DEFAULT_NEGATIVE_PROMPT,
info="Specify elements you don't want in the image.",
)
add_quality_tags = gr.Checkbox(
label="Quality Tags",
value=True,
info="Add quality-enhancing tags to your prompt automatically.",
)
with gr.Accordion(label="More Settings", open=False):
with gr.Group():
aspect_ratio_selector = gr.Radio(
label="Aspect Ratio",
choices=aspect_ratios,
value=DEFAULT_ASPECT_RATIO,
container=True,
info="Choose the dimensions of your image.",
)
with gr.Group(visible=False) as custom_resolution:
with gr.Row():
custom_width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
info=f"Image width (must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE})",
)
custom_height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=8,
value=1024,
info=f"Image height (must be between {MIN_IMAGE_SIZE} and {MAX_IMAGE_SIZE})",
)
with gr.Group():
use_upscaler = gr.Checkbox(
label="Use Upscaler",
value=False,
info="Enable high-resolution upscaling.",
)
with gr.Row() as upscaler_row:
upscaler_strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.05,
value=0.55,
visible=False,
info="Control how much the upscaler affects the final image.",
)
upscale_by = gr.Slider(
label="Upscale by",
minimum=1,
maximum=1.5,
step=0.1,
value=1.5,
visible=False,
info="Multiplier for the final image resolution.",
)
with gr.Accordion(label="Advanced Parameters", open=False):
with gr.Group():
style_selector = gr.Dropdown(
label="Style Preset",
interactive=True,
choices=list(styles.keys()),
value="(None)",
info="Apply a predefined style to your generation.",
)
with gr.Group():
sampler = gr.Dropdown(
label="Sampler",
choices=sampler_list,
interactive=True,
value="Euler a",
info="Different samplers can produce varying results.",
)
with gr.Group():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=utils.MAX_SEED,
step=1,
value=0,
info="Set a specific seed for reproducible results.",
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True,
info="Generate a new random seed for each image.",
)
with gr.Group():
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=12,
step=0.1,
value=6.0,
info="Higher values make the image more closely match your prompt.",
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=25,
info="More steps generally mean higher quality but slower generation.",
)
with gr.Column(scale=3):
with gr.Blocks():
run_button = gr.Button("Generate", variant="primary", elem_id="generate-button")
result = gr.Gallery(
label="Generated Images",
columns=1,
height='768px',
preview=True,
show_label=True,
)
with gr.Accordion(label="Generation Parameters", open=False):
gr_metadata = gr.JSON(
label="Image Metadata",
show_label=True,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, gr_metadata],
fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
cache_examples=CACHE_EXAMPLES,
)
# Discord button in a new full row
with gr.Row():
gr.HTML(
"""
"""
)
use_upscaler.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_upscaler,
outputs=[upscaler_strength, upscale_by],
queue=False,
api_name=False,
)
aspect_ratio_selector.change(
fn=lambda x: gr.update(visible=x == "Custom"),
inputs=aspect_ratio_selector,
outputs=custom_resolution,
queue=False,
api_name=False,
)
# Combine all triggers including keyboard shortcuts
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=utils.randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=lambda: gr.update(interactive=False, value="Generating..."),
outputs=run_button,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
seed,
custom_width,
custom_height,
guidance_scale,
num_inference_steps,
sampler,
aspect_ratio_selector,
style_selector,
use_upscaler,
upscaler_strength,
upscale_by,
add_quality_tags,
],
outputs=[result, gr_metadata],
).then(
fn=lambda: gr.update(interactive=True, value="Generate"),
outputs=run_button,
)
if __name__ == "__main__":
demo.queue(api_open=True).launch(show_api=True, show_error=True)
|