Spaces:
Running
Running
import os | |
import gradio as gr | |
import openai | |
from numpy._core.defchararray import endswith, isdecimal, startswith | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
from pathlib import Path | |
from time import sleep | |
import audioread | |
import queue | |
import threading | |
from glob import glob | |
import copy | |
import base64 | |
import json | |
from PIL import Image | |
from io import BytesIO | |
from pydantic import BaseModel | |
import pprint | |
import pandas as pd | |
import yfinance as yf | |
from datetime import datetime, timedelta | |
import pytz | |
import math | |
import numpy as np | |
# import matplotlib.pyplot as plt | |
from pylatexenc.latex2text import LatexNodes2Text | |
load_dotenv(override=True) | |
key = os.getenv('OPENAI_API_KEY') | |
users = os.getenv('LOGNAME') | |
unames = users.split(',') | |
pwds = os.getenv('PASSWORD') | |
pwdList = pwds.split(',') | |
DEEPSEEK_KEY=os.getenv('DEEPSEEK_KEY') | |
GROQ_KEY=os.getenv('GROQ_KEY') | |
site = os.getenv('SITE') | |
if site == 'local': | |
dp = Path('./data') | |
dp.mkdir(exist_ok=True) | |
dataDir = './data/' | |
else: | |
dp = Path('/data') | |
dp.mkdir(exist_ok=True) | |
dataDir = '/data/' | |
stock_data_path = dataDir + 'Stocks.txt' | |
speak_file = dataDir + "speek.wav" | |
# client = OpenAI(api_key = key) | |
#digits = ['zero: ','one: ','two: ','three: ','four: ','five: ','six: ','seven: ','eight: ','nine: '] | |
abbrevs = {'St. ' : 'Saint ', 'Mr. ': 'mister ', 'Mrs. ':'mussus ', 'Mr. ':'mister ', 'Ms. ':'mizz '} | |
special_chat_types = ['math', 'logic'] | |
class Step(BaseModel): | |
explanation: str | |
output: str | |
class MathReasoning(BaseModel): | |
steps: list[Step] | |
final_answer: str | |
def Client(): | |
return OpenAI(api_key = key) | |
def test_plot_df(): | |
data = { | |
"month": ['2024-01','2024-02','2024-03'], | |
"value": [22.4, 30.1, 25.6] | |
} | |
return pd.DataFrame(data) | |
def md(txt): | |
return str(txt).replace('```', ' ').replace(' ', ' ').replace(' ', ' ').replace(' ', ' ').replace('\n','<br>') | |
# return txt | |
def etz_now(): | |
eastern = pytz.timezone('US/Eastern') | |
ltime = datetime.now(eastern) | |
return ltime | |
def date_from_utime(utime): | |
ts = int(utime) | |
dt = datetime.utcfromtimestamp(ts) | |
eastern = pytz.timezone('US/Eastern') | |
return dt.astimezone(eastern).strftime('%Y-%m-%d') | |
def convert_latex_math(text): | |
lines = text.split('\n') | |
start_line = False | |
out_txt = '' | |
for line in lines: | |
if len(line) == 0: | |
out_txt += '\n' | |
continue | |
else: | |
if line == r'\]': | |
continue | |
if line == r'\[': | |
start_line = True | |
continue | |
if start_line: | |
line = '\n' + LatexNodes2Text().latex_to_text(line.strip()) | |
start_line = False | |
if line.startswith(r'\['): | |
loc = line.find(r'\]') | |
if loc > 0: | |
latex_code = line[2:loc] | |
line = '\n' + LatexNodes2Text().latex_to_text(latex_code) | |
out_txt += (line + '\n') | |
return out_txt | |
def stock_list(): | |
rv = '' | |
with open(stock_data_path, 'rt') as fp: | |
lines = fp.readlines() | |
for line in lines: | |
(name, symbol, shares) = line.rstrip().split(',') | |
name = name.strip() | |
symbol = symbol.strip() | |
rv += f'{symbol} {name}\n' | |
return rv | |
def get_stock_list(): | |
stock_list = {} | |
with open(stock_data_path, 'rt') as fp: | |
lines = fp.readlines() | |
for line in lines: | |
(name, symbol, shares) = line.rstrip().split(',') | |
stock_list[symbol.strip()] = (name.strip(),shares.strip()) | |
return stock_list | |
def get_stock_news(search_symbol): | |
fuzzy = True | |
have_symbol = False | |
search_symbol = search_symbol.strip().upper() | |
stock_list = get_stock_list() | |
search_term = search_symbol | |
if search_symbol in stock_list.keys(): | |
have_symbol = True | |
(search_term, shares) = stock_list[search_symbol] | |
try: | |
news = yf.Search(search_term, news_count=5, enable_fuzzy_query=fuzzy).news | |
except: | |
return (f'No results for search term {search_term}, check spelling', None) | |
rv = '' | |
for item in news: | |
rv += f'Title: {item["title"]}\n' | |
rv += f'Publisher: {item["publisher"]}\n' | |
rv += f'Date published: {date_from_utime(item["providerPublishTime"])}\n' | |
rv += f'Link: [URL]({item["link"]})\n\n' | |
if have_symbol: | |
(plot_df, ymax, deltas) = stock_week_df(search_symbol) | |
else: | |
(plot_df, ymax, deltas) = (pd.DataFrame(), 0.0, (0.0, 0.0, 0.0)) | |
return (rv, plot_df, ymax, deltas) | |
def stock_history_df(num_weeks): | |
values = [] | |
dates = [] | |
xmax = 0 | |
for offset in range(num_weeks+1): | |
(value, date) = get_stock_report(False, offset) | |
# date = date[5:] | |
values.append(value) | |
dates.append(date) | |
if float(value) > xmax: | |
xmax = float(value) | |
values.reverse() | |
dates.reverse() | |
data = { | |
"date": dates, | |
"value" : values | |
} | |
return (pd.DataFrame(data), f'{int(xmax + 10000)}') | |
# def make_mp_figure(dates, values, fit_values, ymax = 0.0): | |
# npdates = np.asarray(dates) | |
# npvals = np.asarray(values) | |
# npfits = np.asarray(fit_values) | |
# plt_format = '-' | |
# fig = plt.figure(layout="constrained", figsize=(6,2)) | |
# ax = fig.add_subplot(111) | |
# tics = [] | |
# labels = [] | |
# i = len(dates) - 1 | |
# while i >= 0: | |
# tics.append(i) | |
# labels.append(dates[i]) | |
# i -= 5 | |
# # tics = list(range(0,len(dates),5)) | |
# # labels = dates[0::5] | |
# ax.set_xticks(tics, labels = labels) | |
# ax.plot(npdates, npvals, plt_format) | |
# ax.plot(npdates, npfits, plt_format) | |
# ax.set_ylim(0.0, ymax*1.05) | |
# # ax.set_xlim(dates[0], dates[-1:]) | |
# return fig | |
# def lms_fit_trend(dates, values): | |
# # days = [] | |
# # fit_data = [] | |
# days = list(range(0, len(dates))) | |
# fit = np.polyfit(days, values, 1) | |
# delta = len(dates) * float(fit[0]) | |
# avg = float(fit[1]) + 0.5 * delta | |
# pct_delta = 100 * delta / avg | |
# # for day in days: | |
# # fit_data.append(float(fit[0]) * day + float(fit[1]) ) | |
# # return fit_data | |
# return pct_delta | |
def stock_deltas(values): | |
num = len(values) | |
month_end_avg = float(np.average(np.array(values[-3:]))) | |
month_start_avg = float(np.average(np.array(values[0:4]))) | |
week_start_avg = float(np.average(np.array(values[-7:-4]))) | |
week_end_avg = float(np.average(np.array(values[-2:]))) | |
month_delta = 100 * (month_end_avg - month_start_avg)/month_start_avg | |
week_delta = 100 * (week_end_avg - week_start_avg)/week_start_avg | |
daily_delta = 100 * ((float(values[num-1])/float(values[num-2])) - 1.0) | |
# avg = np.average(npa) | |
return (month_delta, week_delta, daily_delta) | |
def stock_week_df(symbol): | |
try: | |
dates = [] | |
values = [] | |
ymax = 0 | |
etime = etz_now() | |
if etime.hour >= 16: | |
etime = etime + timedelta(days=1) | |
week_ago = etime - timedelta(days=40) # was 8 | |
end = etime.strftime('%Y-%m-%d') | |
start = week_ago.strftime('%Y-%m-%d') | |
df = yf.download(symbol.upper(), | |
start = start, | |
end = end, | |
progress = False, | |
) | |
vals2d = df.values.tolist() | |
valsTxt = [] | |
numDays = len(vals2d) | |
for i in range(numDays): | |
valsTxt.append(vals2d[i][0]) | |
for val in valsTxt: | |
v = round(float(val),2) | |
values.append(v) | |
if v > ymax: | |
ymax = v | |
for row in df.index: | |
dates.append(row.strftime('%Y-%m-%d')) | |
# fit_data = lms_fit(dates, values) | |
# pct_delta = lms_fit_trend(dates, values) | |
deltas = stock_deltas(values) | |
data = { | |
"date": dates, | |
"value" : values, | |
# "fit" : fit_data | |
} | |
# fig = make_mp_figure(dates, values, fit_data, ymax) | |
return (pd.DataFrame(data), ymax, deltas) | |
except: | |
return (pd.DataFrame(), ymax, (0.0, 0.0, 0.0)) | |
def get_stock_report(verbose = True, offset = 0): | |
try: | |
stock_data = {} | |
global stock_data_path | |
error_msg = '' | |
with open(stock_data_path, 'rt') as fp: | |
lines = fp.readlines() | |
for line in lines: | |
(name, symbol, shares) = line.rstrip().split(',') | |
name = name.strip() | |
symbol = symbol.strip() | |
shares = shares.strip() | |
stock_data[symbol] = {"symbol": symbol, "name": name, "shares": shares, "closing": '0'} | |
for symbol in stock_data.keys(): | |
(closing_price, closing_date) = get_last_closing(symbol, offset) | |
if closing_price == 0: | |
error_msg += f'Error getting closing for {symbol}\n' | |
stock_data[symbol]['closing'] = f'{closing_price:.2f}' | |
total_value = 0.0 | |
if verbose: | |
rv = f'At closing on {closing_date}:\n' | |
for item in stock_data.values(): | |
rv += str(item) + '\n' | |
total_value += float(item['closing']) * float(item['shares']) | |
rv += (f'\nTotal value = {total_value:.2f}\n') | |
if len(error_msg) > 0: | |
rv += error_msg | |
rv += f'Eastern time is: {etz_now()}' | |
else: | |
for item in stock_data.values(): | |
total_value += float(item['closing']) * float(item['shares']) | |
return (total_value, closing_date) | |
except: | |
rv = 'Error getting stock report' | |
return rv | |
def get_last_closing(symbol, offset=0, timeout=10): | |
try: | |
etime = etz_now() | |
if etime.hour >= 16: | |
etime = etime + timedelta(days=1) | |
if offset > 0: | |
etime = etime - timedelta(weeks=offset) | |
five_days_ago = etime - timedelta(days=6) | |
end = etime.strftime('%Y-%m-%d') | |
start = five_days_ago.strftime('%Y-%m-%d') | |
df = yf.download(symbol, | |
start = start, | |
end = end, | |
progress = False, | |
timeout=timeout, | |
) | |
# print(df) | |
closing_date = 'unknown' | |
data_top = df.tail(1) | |
for row in data_top.index: | |
closing_date = row.strftime('%Y-%m-%d') | |
# print(closing_date) | |
return (df.iat[-1,0], closing_date) | |
except: | |
return (0.0, "0000-00-00") | |
def get_total_daily_closing_sequence(num_days): | |
try: | |
first_loop = True | |
max_val = 0.0 | |
stock_list = get_stock_list() | |
symbols = [s for s in stock_list.keys()] | |
# symbols = symbols[8:10] | |
etime = etz_now() | |
if etime.hour >= 16: | |
etime = etime + timedelta(days=1) | |
end = etime.strftime('%Y-%m-%d') | |
start_time = etime - timedelta(days = num_days) | |
start = start_time.strftime('%Y-%m-%d') | |
df = yf.download(symbols, | |
start = start, | |
end = end, | |
progress = False, | |
) | |
# val2d = df.values.tolist() | |
dates = [] | |
for row in df.index: | |
dates.append(row.strftime('%Y-%m-%d')) | |
# columns = list(df.columns.values) | |
# cvals = df[columns[0]].tolist() | |
for sym in symbols: | |
(name, shares) = stock_list[sym] | |
values = df[('Close', sym)].tolist() | |
n = len(values) | |
for i in range(n): | |
if math.isnan(float(values[i])): | |
if i == 0: | |
values[0] = values[1] | |
else: | |
values[i] = values[i-1] | |
if first_loop: | |
first_loop = False | |
total_values = values.copy() | |
for i in range(n): | |
total_values[i] = float(total_values[i]) * float(shares) | |
else: | |
for i in range(n): | |
total_values[i] += (float(values[i]) * float(shares)) | |
for i in range(n): | |
total_values[i] = round(total_values[i], 2) | |
if total_values[i] > max_val: | |
max_val = total_values[i] | |
data = { | |
"date": dates, | |
"value" : total_values | |
} | |
return (pd.DataFrame(data), max_val) | |
except: | |
return (pd.DataFrame(), 0.0) | |
def get_daily_closing_sequence(symbol, num_days): | |
try: | |
dates = [] | |
values = [] | |
etime = etz_now() | |
if etime.hour >= 16: | |
etime = etime + timedelta(days=1) | |
end = etime.strftime('%Y-%m-%d') | |
start_time = etime - timedelta(days = num_days) | |
start = start_time.strftime('%Y-%m-%d') | |
df = yf.download(symbol, | |
start = start, | |
end = end, | |
progress = False, | |
) | |
vals2d = df.values.tolist() | |
valsTxt = [] | |
values = [round(float(vals2d[i][0]),2) for i in range(len(vals2d))] | |
for row in df.index: | |
dates.append(row.strftime('%Y-%m-%d')) | |
return(dates, values) | |
except: | |
return([],[]) | |
def create_stock_data_file(txt): | |
with open(stock_data_path, 'wt') as fp: | |
fp.write(txt) | |
def solve(prompt, chatType): | |
tokens_in = 0 | |
tokens_out = 0 | |
tokens = 0 | |
if chatType == 'math': | |
instruction = "You are a helpful math tutor. Guide the user through the solution step by step." | |
elif chatType == "logic": | |
instruction = "you are an expert in logic and reasoning. Guide the user through the solution step by step" | |
try: | |
completion = Client().beta.chat.completions.parse( | |
model = 'gpt-4o-2024-08-06', | |
messages = [ | |
{"role": "system", "content": instruction}, | |
{"role": "user", "content": prompt} | |
], | |
response_format=MathReasoning, | |
max_tokens = 2000 | |
) | |
tokens_in = completion.usage.prompt_tokens | |
tokens_out = completion.usage.completion_tokens | |
tokens = completion.usage.total_tokens | |
msg = completion.choices[0].message | |
if msg.parsed: | |
dr = msg.parsed.model_dump() | |
response = pprint.pformat(dr) | |
elif msg.refusal: | |
response = msg.refusal | |
except Exception as e: | |
if type(e) == openai.LengthFinishReasonError: | |
response = 'Too many tokens' | |
else: | |
response = str(e) | |
return (response, tokens_in, tokens_out, tokens) | |
def genUsageStats(do_reset=False): | |
result = [] | |
ttotal4o_in = 0 | |
ttotal4o_out = 0 | |
ttotal4mini_in = 0 | |
ttotal4mini_out = 0 | |
totalAudio = 0 | |
totalSpeech = 0 | |
totalImages = 0 | |
totalHdImages = 0 | |
if do_reset: | |
dudPath = dataDir + '_speech.txt' | |
if os.path.exists(dudPath): | |
os.remove(dudPath) | |
for user in unames: | |
tokens4o_in = 0 | |
tokens4o_out = 0 | |
tokens4mini_in = 0 | |
tokens4mini_out = 0 | |
fp = dataDir + user + '_log.txt' | |
if os.path.exists(fp): | |
accessOk = False | |
for i in range(3): | |
try: | |
with open(fp) as f: | |
dataList = f.readlines() | |
if do_reset: | |
os.remove(fp) | |
else: | |
for line in dataList: | |
(u, t) = line.split(':') | |
(t, m) = t.split('-') | |
(tin, tout) = t.split('/') | |
incount = int(tin) | |
outcount = int(tout) | |
if 'mini' in m: | |
tokens4mini_in += incount | |
tokens4mini_out += outcount | |
ttotal4mini_in += incount | |
ttotal4mini_out += outcount | |
else: | |
tokens4o_in += incount | |
tokens4o_out += outcount | |
ttotal4o_in += incount | |
ttotal4o_out += outcount | |
accessOk = True | |
break | |
except: | |
sleep(3) | |
if not accessOk: | |
return f'File access failed reading stats for user: {user}' | |
userAudio = 0 | |
fp = dataDir + user + '_audio.txt' | |
if os.path.exists(fp): | |
accessOk = False | |
for i in range(3): | |
try: | |
with open(fp) as f: | |
dataList = f.readlines() | |
if do_reset: | |
os.remove(fp) | |
else: | |
for line in dataList: | |
(dud, len) = line.split(':') | |
userAudio += int(len) | |
totalAudio += int(userAudio) | |
accessOk = True | |
break | |
except: | |
sleep(3) | |
if not accessOk: | |
return f'File access failed reading audio stats for user: {user}' | |
userSpeech = 0 | |
fp = dataDir + user + '_speech.txt' | |
if os.path.exists(fp): | |
accessOk = False | |
for i in range(3): | |
try: | |
with open(fp) as f: | |
dataList = f.readlines() | |
if do_reset: | |
os.remove(fp) | |
else: | |
for line in dataList: | |
(dud, len) = line.split(':') | |
userSpeech += int(len) | |
totalSpeech += int(userSpeech) | |
accessOk = True | |
break | |
except: | |
sleep(3) | |
if not accessOk: | |
return f'File access failed reading speech stats for user: {user}' | |
user_images = 0 | |
user_hd_images = 0 | |
fp = image_count_path(user) | |
if os.path.exists(fp): | |
accessOk = False | |
for i in range(3): | |
try: | |
with open(fp) as f: | |
dataList = f.readlines() | |
if do_reset: | |
os.remove(fp) | |
else: | |
for line in dataList: | |
x = line.strip() | |
if x == 'hd': | |
user_hd_images += 1 | |
totalHdImages += 1 | |
else: | |
user_images += 1 | |
totalImages += 1 | |
accessOk = True | |
break | |
except: | |
sleep(3) | |
if not accessOk: | |
return f'File access failed reading image gen stats for user: {user}' | |
result.append([user, f'{tokens4mini_in}/{tokens4mini_out}', f'{tokens4o_in}/{tokens4o_out}', f'audio:{userAudio}',f'speech:{userSpeech}', f'images:{user_images}/{user_hd_images}']) | |
result.append(['totals', f'{ttotal4mini_in}/{ttotal4mini_out}', f'{ttotal4o_in}/{ttotal4o_out}', f'audio:{totalAudio}',f'speech:{totalSpeech}', f'images:{totalImages}/{totalHdImages}']) | |
return result | |
def new_conversation(user): | |
clean_up(user) # .wav files | |
flist = glob(f'{dataDir}{user}.png') | |
flist.extend(glob(f'{dataDir}{user}_image.b64')) | |
for fpath in flist: | |
if os.path.exists(fpath): | |
os.remove(fpath) | |
return [None, [], gr.Markdown(value='', label='Dialog', container=True), gr.Image(visible=False, value=None), gr.Image(visible=False, value=None), '', | |
gr.LinePlot(visible=False)] | |
def updatePassword(txt): | |
password = txt.lower().strip() | |
return [password, "*********"] | |
# def parse_math(txt): | |
# ref = 0 | |
# loc = txt.find(r'\(') | |
# if loc == -1: | |
# return txt | |
# while (True): | |
# loc2 = txt[ref:].find(r'\)') | |
# if loc2 == -1: | |
# break | |
# loc = txt[ref:].find(r'\(') | |
# if loc > -1: | |
# loc2 += 2 | |
# slice = txt[ref:][loc:loc2] | |
# frag = lconv.convert(slice) | |
# txt = txt[:loc+ref] + frag + txt[loc2+ref:] | |
# ref = len(txt[ref:loc]) + len(frag) | |
# return txt | |
def chat(prompt, user_window, pwd_window, past, response, gptModel, uploaded_image_file='', plot=None): | |
image_gen_model = 'gpt-4o-2024-08-06' | |
user_window = user_window.lower().strip() | |
isBoss = False | |
if not response: | |
response = '' | |
plot = gr.LinePlot(visible=False) | |
# plot = gr.Plot(visible=False) | |
if user_window == unames[0] and pwd_window == pwdList[0]: | |
isBoss = True | |
if prompt == 'stats': | |
response = genUsageStats() | |
return [past, md(response), None, gptModel, uploaded_image_file, plot] | |
if prompt == 'reset': | |
response = genUsageStats(True) | |
return [past, response, None, gptModel, uploaded_image_file, plot] | |
if prompt.startswith('gpt4'): | |
gptModel = 'gpt-4o-2024-08-06' | |
prompt = prompt[5:] | |
if prompt.startswith("clean"): | |
user = prompt[6:] | |
response = f'cleaned all .wav and .b64 files for {user}' | |
final_clean_up(user, True) | |
return [past, response, None, gptModel, uploaded_image_file, plot] | |
if prompt.startswith('files'): | |
(log_cnt, wav_cnt, other_cnt, others, log_list) = list_permanent_files() | |
response = f'{log_cnt} log files\n{wav_cnt} .wav files\n{other_cnt} Other files:\n{others}\nlogs: {str(log_list)}' | |
return [past, response, None, gptModel, uploaded_image_file, plot] | |
if prompt.startswith('stock'): | |
args = prompt.split(' ') | |
num = len(args) | |
if num == 1: | |
response = stock_list() | |
return [past, md(response), None, gptModel, uploaded_image_file, plot] | |
elif num == 2: | |
response = get_stock_report() | |
if args[1] == 'value': | |
return [past, md(response), None, gptModel, uploaded_image_file, plot] | |
elif args[1] == 'history': | |
(plot_df, ymax) = get_total_daily_closing_sequence(40) #stock_history_df(12) | |
# ymax = float(ymax) | |
return [past, md(response), None, gptModel, uploaded_image_file, # plot] | |
gr.LinePlot(plot_df, x="date", y="value", visible=True, x_label_angle=270, | |
y_lim=[500000, 700000], label="Portfolio Value History")] | |
elif num >= 3: | |
if args[1] == 'news': | |
symbol = ' '.join(args[2:]) | |
(response, plot_df, ymax, (dm, dw, dd)) = get_stock_news(symbol) | |
ymax *= 1.1 | |
mdtxt = md(f'News for {symbol}:\nTrends: Month = {dm:.1f}%, Week = {dw:.1f}%, Day = {dd:.1f}%\n\n' + response) | |
if plot_df.empty: | |
return [past, mdtxt, None, gptModel, uploaded_image_file, plot] | |
else: | |
return [past, mdtxt, None, gptModel, uploaded_image_file, #gr.Plot(plot_df, visible=True)] | |
gr.LinePlot(plot_df, x="date", y="value", visible=True, x_label_angle=270, | |
y_lim=[0, ymax],label=f"{symbol.upper()} Recent Prices", | |
color_map={''})] | |
# elif arg[1] == 'history': | |
# symbol = arg[2] | |
# response = 'ok' # get_ | |
# if prompt.startswith('stock values'): | |
# response = get_stock_report() | |
# if 'history' in prompt: | |
# (plot_df, ymax) = stock_history_df(12) | |
# ymax = float(ymax) | |
# return [past, response, None, gptModel, uploaded_image_file, | |
# gr.LinePlot(plot_df, x="date", y="value", visible=True, | |
# y_lim=[500000, 700000], label="Portfolio Value History")] | |
# else: | |
# return [past, response, None, gptModel, uploaded_image_file, plot] | |
# if prompt.startswith('stock news'): | |
# symbol = prompt[11:] | |
# response = get_stock_news(symbol) | |
# return [past, response, None, gptModel, uploaded_image_file, plot] | |
if prompt.startswith('stockload'): | |
create_stock_data_file(prompt[9:].lstrip()) | |
return [past, 'Stock data file created', None, gptModel, uploaded_image_file, plot] | |
if user_window in unames and pwd_window == pwdList[unames.index(user_window)]: | |
chatType = 'normal' | |
deepseek = False | |
using_groq = False | |
reasoning = False | |
prompt = prompt.strip() | |
if prompt.lower().startswith('dsr1 '): | |
deepseek = True | |
ds_model = 'deepseek-ai/DeepSeek-R1' | |
prompt = prompt[5:] | |
elif prompt.lower().startswith('ds1.5 '): | |
deepseek = True | |
ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B' | |
prompt = prompt[6:] | |
elif prompt.lower().startswith('ds14 '): | |
deepseek = True | |
ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B' | |
prompt = prompt[5:] | |
elif prompt.lower().startswith('ds70 '): | |
deepseek = True | |
ds_model = 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B' | |
prompt = prompt[5:] | |
elif prompt.lower().startswith('ds70g '): | |
deepseek = True | |
using_groq = True | |
ds_model = 'deepseek-r1-distill-llama-70b' | |
prompt = prompt[6:] | |
elif prompt.lower().startswith('o1m '): | |
reasoning = True | |
gptModel = 'o1-mini' | |
prompt = prompt[4:] + \ | |
'. Provide a detailed step-by-step description of your reasoning. Do not use Latex for math expressions.' | |
elif prompt.lower().startswith('solve'): | |
prompt = 'How do I solve ' + prompt[5:] + ' Do not use Latex for math expressions.' | |
chatType = 'math' | |
elif prompt.lower().startswith('puzzle'): | |
chatType = 'logic' | |
prompt = prompt[6:] | |
if deepseek: | |
prompt = prompt + '. Do not use Latex for math expressions.' | |
past.append({"role":"user", "content":prompt}) | |
gen_image = (uploaded_image_file != '') | |
if chatType in special_chat_types: | |
(reply, tokens_in, tokens_out, tokens) = solve(prompt, chatType) | |
final_text = reply | |
reporting_model = image_gen_model | |
elif not gen_image: | |
if deepseek: | |
if using_groq: | |
client = OpenAI(api_key=GROQ_KEY, base_url='https://api.groq.com/openai/v1') | |
completion = client.chat.completions.create( | |
temperature=0.6, | |
model= ds_model, | |
messages=past) | |
reporting_model='deepseek70-groq' | |
else: | |
client = OpenAI(api_key=DEEPSEEK_KEY, base_url='https://api.together.xyz/v1') | |
completion = client.chat.completions.create( | |
temperature=0.6, | |
model= ds_model, | |
messages=past) | |
reporting_model='deepseek-together-' + ds_model[-3:].replace('.5B','1.5B') | |
else: | |
completion = Client().chat.completions.create(model=gptModel, | |
messages=past) | |
reporting_model = gptModel | |
else: | |
(completion, msg) = analyze_image(user_window, image_gen_model, prompt) | |
uploaded_image_file= '' | |
reporting_model = image_gen_model | |
if not msg == 'ok': | |
return [past, msg, None, gptModel, uploaded_image_file, plot] | |
if not chatType in special_chat_types: | |
reply = completion.choices[0].message.content | |
# if 'groq' in reporting_model: | |
if deepseek: | |
reply = convert_latex_math(reply) | |
final_text = reply | |
if deepseek: | |
loc1 = reply.find('<think>') | |
if loc1 > -1: | |
loc2 = reply.find('</think>') | |
if loc2 > loc1: | |
final_text = reply[loc2 + 8:] | |
reply = reply.replace('<think>','\n***Thinking***\n').replace('</think>','\n***Done thinking***\n') | |
tokens_in = completion.usage.prompt_tokens | |
tokens_out = completion.usage.completion_tokens | |
tokens = completion.usage.total_tokens | |
response += md("\n\n***YOU***: " + prompt + "\n***GPT***: " + reply) | |
if isBoss: | |
response += md(f"\n{reporting_model}: tokens in/out = {tokens_in}/{tokens_out}") | |
if tokens > 40000: | |
response += "\n\nTHIS DIALOG IS GETTING TOO LONG. PLEASE RESTART CONVERSATION SOON." | |
past.append({"role":"assistant", "content": final_text}) | |
if not deepseek and not reasoning: | |
accessOk = False | |
for i in range(3): | |
try: | |
dataFile = new_func(user_window) | |
with open(dataFile, 'a') as f: | |
m = '4o' | |
if 'mini' in reporting_model: | |
m = '4omini' | |
f.write(f'{user_window}:{tokens_in}/{tokens_out}-{m}\n') | |
accessOk = True | |
break | |
except Exception as e: | |
sleep(3) | |
if not accessOk: | |
response += f"\nDATA LOG FAILED, path = {dataFile}" | |
return [past, response , None, gptModel, uploaded_image_file, plot] | |
else: | |
return [[], "User name and/or password are incorrect", prompt, gptModel, uploaded_image_file, plot] | |
def new_func(user): | |
dataFile = dataDir + user + '_log.txt' | |
return dataFile | |
def image_count_path(user): | |
fpath = dataDir + user + '_image_count.txt' | |
return fpath | |
def transcribe(user, pwd, fpath): | |
user = user.lower().strip() | |
pwd = pwd.lower().strip() | |
if not (user in unames and pwd in pwdList): | |
return 'Bad credentials' | |
with audioread.audio_open(fpath) as audio: | |
duration = int(audio.duration) | |
if duration > 0: | |
with open(dataDir + user + '_audio.txt','a') as f: | |
f.write(f'audio:{str(duration)}\n') | |
with open(fpath,'rb') as audio_file: | |
transcript = Client().audio.transcriptions.create( | |
model='whisper-1', file = audio_file ,response_format = 'text' ) | |
reply = transcript | |
return str(reply) | |
def pause_message(): | |
return "Audio input is paused. Resume or Stop as desired" | |
# def gen_output_audio(txt): | |
# if len(txt) < 10: | |
# txt = "This dialog is too short to mess with!" | |
# response = Client().audio.speech.create(model="tts-1", voice="fable", input=txt) | |
# with open(speak_file, 'wb') as fp: | |
# fp.write(response.content) | |
# return speak_file | |
# def set_speak_button(txt): | |
# vis = False | |
# if txt and len(txt) > 2: | |
# vis = True | |
# return gr.Button(visible=vis) | |
def update_user(user_win): | |
user_win = user_win.lower().strip() | |
user = 'unknown' | |
for s in unames: | |
if user_win == s: | |
user = s | |
break | |
return [user, user] | |
def speech_worker(chunks=[],q=[]): | |
for chunk in chunks: | |
fpath = q.pop(0) | |
response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav') | |
with open(fpath, 'wb') as fp: | |
fp.write(response.content) | |
def gen_speech_file_names(user, cnt): | |
rv = [] | |
for i in range(0, cnt): | |
rv.append(dataDir + f'{user}_speech{i}.wav') | |
return rv | |
def final_clean_up(user, do_b64 = False): | |
user = user.strip().lower() | |
if user == 'kill': | |
flist = glob(dataDir + '*') | |
elif user == 'all': | |
flist = glob(dataDir + '*_speech*.wav') | |
if do_b64: | |
flist.extend(glob(dataDir + '*.b64')) | |
else: | |
flist = glob(dataDir + f'{user}_speech*.wav') | |
if do_b64: | |
flist.append(dataDir + user + '_image.b64') | |
for fpath in flist: | |
try: | |
os.remove(fpath) | |
except: | |
continue | |
def delete_image(user): | |
fpath = dataDir + user + '.png' | |
if os.path.exists(fpath): | |
os.remove(fpath) | |
def list_permanent_files(): | |
flist = os.listdir(dataDir) | |
others = [] | |
log_cnt = 0 | |
wav_cnt = 0 | |
other_cnt = 0 | |
list_logs = [] | |
for fpath in flist: | |
if fpath.endswith('.txt'): | |
log_cnt += 1 | |
list_logs.append(fpath) | |
elif fpath.endswith('.wav'): | |
wav_cnt += 1 | |
else: | |
others.append(fpath) | |
other_cnt = len(others) | |
if log_cnt > 5: | |
list_logs = [] | |
return (str(log_cnt), str(wav_cnt), str(other_cnt), str(others), list_logs) | |
def make_image(prompt, user, pwd): | |
user = user.lower().strip() | |
msg = 'Error: unable to create image.' | |
fpath = None | |
model = 'dall-e-2' | |
size = '512x512' | |
quality = 'standard' | |
if user in unames and pwd == pwdList[unames.index(user)]: | |
if len(prompt.strip()) == 0: | |
return [gr.Image(value=None, visible=False), 'You must provide a prompt describing image you desire'] | |
if prompt.startswith('hd '): | |
prompt = prompt[3:] | |
model = 'dall-e-3' | |
size = '1024x1024' | |
quality = 'hd' | |
try: | |
response = Client().images.generate(model=model, prompt=prompt,size=size, | |
quality=quality, response_format='b64_json') | |
except Exception as ex: | |
msg = ex.message | |
return [gr.Image(visible=False, value=None), msg] | |
if len(response.data) == 0: | |
msg = "OpenAI returned no image data" | |
return [gr.Image(visible=False, value=None), msg] | |
try: | |
image_data = response.data[0].b64_json | |
with Image.open(BytesIO(base64.b64decode(image_data))) as image: | |
fpath = dataDir + user + '.png' | |
image.save(fpath) | |
with open(image_count_path(user), 'at') as fp: | |
if quality == 'hd': | |
fp.write('hd\n') | |
else: | |
fp.write('1\n') | |
msg = 'Image created!' | |
except: | |
return [gr.Image(visible=False, value=None), msg] | |
else: | |
msg = 'Incorrect user name or password' | |
return [gr.Image(visible=False, value=None), msg] | |
return [gr.Image(visible=True, value=fpath), msg] | |
def show_help(): | |
txt = ''' | |
1. Gemeral: | |
1.1 Login with user name and password (not case-sensitive) | |
1.2 Type prompts (questions, instructions) into "Prompt or Question" window (OR) you can speak prompts by | |
tapping the audio "Record" button, saying your prompt, then tapping the "Stop" button. | |
Your prompt will appear in the Prompt window, and you can edit it there if needed. | |
1.3 Text in the "Dialog" window can be spoken by tapping the "Speak Dialog" button. | |
2. Chat: | |
2.1 Enter prompt and tap the "Submit Prompt/Question" button. The responses appear in the Dialog window. | |
2.2 Enter follow-up questions in the Prompt window either by typing or speaking. Tap the voice | |
entry "Reset Voice Entry" button to enable additional voice entry. Then tap "Submit Prompt/Question". | |
2.3 If topic changes or when done chatting, tap the "Restart Conversation" button. | |
3. Solve math equations or logic problems providing step-by-step analysis: | |
3.1 Math: Make "solve" the first word in your prompt, followed by the equation, e.g., x^2 - x + 1 = 0 | |
3.2 Logic: Make "puzzle" the first word in your prompt, followed by a detailed description of a logic | |
problem with the answer(s) you desire. | |
4. Make Image: | |
4.1 Enter description of desired image in prompt window via either typing or voice entry | |
4.2 Tap the "Make Image" button. This can take a few seconds. | |
4.3 There is a download button on the image display if your system supports file downloads. | |
4.4 When done viewing image, tap the "Restart Conversation" button | |
5. Analyze an Image you provide: | |
5.1 Enter what you want to know about the image in the prompt window. You can include instructions | |
to write a poem about something in the image, for example. Or just say "what's in this image?" | |
5.2 Tap the "Upload Image to Analyze" button. | |
5.3 An empty image box will appear lower left. Drag or upload image into it. It offers web cam or camera | |
input also. | |
5.4 The image should appear. This can take some time with a slow internet connection and large image. | |
5.5 Tap the "Submit Prompt/Question" button to start the analysis. This initiates a chat dialog and | |
you can ask follow-up questions. However, the image is not re-analyzed for follow-up dialog. | |
Hints: | |
1. Better chat and image results are obtained by including detailed descriptions and instructions | |
in the prompt. | |
2. Always tap "Restart Conversation" before requesting an image or changing chat topics. | |
3. Audio input and output functions depend on the hardware capability of your device. | |
4. "Speak Dialog" will voice whatever is currently in the Dialog window. You can repeat it and you | |
can edit what's to be spoken. Except: In a chat conversation, spoken dialog will only include | |
the latest prompt/response ("YOU:/GPT:") sequence.''' | |
return md(txt) | |
def upload_image(prompt, user, password): | |
if not (user in unames and password == pwdList[unames.index(user)]): | |
return [gr.Image(visible=False, interactive=True), "Incorrect user name and/or password"] | |
if len(prompt) < 3: | |
return [gr.Image(visible=False, interactive=True), "You must provide prompt/instructions (what to do with the image)"] | |
return [gr.Image(visible=True, interactive=True), ''] | |
def load_image(image, user): | |
status = 'OK, image is ready! Tap "Submit Prompt/Question" to start analyzing' | |
try: | |
with open(image, 'rb') as image_file: | |
base64_image = base64.b64encode(image_file.read()).decode('utf-8') | |
fpath = dataDir + user + '_image.b64' | |
with open(fpath, 'wt') as fp: | |
fp.write(base64_image) | |
except: | |
status = 'Unable to upload image' | |
return [fpath, status] | |
def analyze_image(user, model, prompt): | |
status = 'ok' | |
try: | |
with open(dataDir + user + '_image.b64', 'rt') as fp: | |
base64_image = fp.read() | |
except: | |
status = "base64 image file not found" | |
return [None, status] | |
completion = Client().chat.completions.create( | |
model=model, | |
messages=[ | |
{ "role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": prompt | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}", | |
"detail": "high" | |
} | |
} | |
] | |
} | |
], | |
max_tokens= 500 | |
) | |
# response = completion.choices[0].message.content | |
return [completion, status] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
history = gr.State([]) | |
password = gr.State("") | |
user = gr.State("unknown") | |
model = gr.State("gpt-4o-mini") | |
q = gr.State([]) | |
qsave = gr.State([]) | |
uploaded_image_file = gr.State('') | |
def clean_up(user): | |
flist = glob(dataDir + f'{user}_speech*.wav') | |
for fpath in flist: | |
try: | |
os.remove(fpath) | |
except: | |
continue | |
def initial_audio_output(txt, user): | |
global digits | |
global abbrevs | |
if not user in unames: | |
return [gr.Audio(sources=None), []] | |
clean_up(user) | |
q = [] | |
if len(txt.strip()) < 5: | |
return ['None', q] | |
try: | |
loc = txt.rindex('YOU:') | |
txt = txt[loc:] | |
except: | |
pass | |
for s,x in abbrevs.items(): | |
txt = txt.replace(s, x) | |
words_in = txt.replace('**', '').replace(' ','').split('<br>') | |
words_out = [] | |
for s in words_in: | |
s = s.lstrip('- *@#$%^&_=+-') | |
if len(s) > 0: | |
loc = s.find(' ') | |
if loc > 1: | |
val = s[0:loc] | |
isnum = val.replace('.','0').isdecimal() | |
if isnum: | |
if val.endswith('.'): | |
val = val[:-1].replace('.',' point ') + '., ' | |
else: | |
val = val.replace('.', ' point ') + ', ' | |
s = 'num'+ val + s[loc:] | |
words_out.append(s) | |
chunklist = [] | |
for chunk in words_out: | |
if chunk.strip() == '': | |
continue | |
isnumbered = chunk.startswith('num') | |
number = '' | |
loc = 0 | |
if isnumbered: | |
chunk = chunk[3:] | |
loc = chunk.index(',') | |
number = chunk[0:loc] | |
chunk = chunk[loc:] | |
locs = [] | |
for i in range(1,len(chunk)-1): | |
(a, b, c) = chunk[i-1:i+2] | |
if a.isdecimal() and b == '.' and c.isdecimal(): | |
locs.append(i) | |
for i in locs: | |
chunk = chunk[:i] + ' point ' + chunk[i+1:] | |
if len(chunk) > 50: | |
finechunks = chunk.split('.') | |
for fchunk in finechunks: | |
if isnumbered: | |
fchunk = number + fchunk | |
isnumbered = False | |
if len(fchunk) > 0: | |
if fchunk != '"': | |
chunklist.append(fchunk) | |
else: | |
line = number + chunk | |
if line != '"': | |
chunklist.append(line) | |
total_speech = 0 | |
for chunk in chunklist: | |
total_speech += len(chunk) | |
with open(dataDir + user + '_speech.txt','a') as f: | |
f.write(f'speech:{str(total_speech)}\n') | |
chunk = chunklist[0] | |
if chunk.strip() == '': | |
return gr.Audio(sources=None) | |
fname_list = gen_speech_file_names(user, len(chunklist)) | |
q = fname_list.copy() | |
qsave = fname_list.copy() | |
fname = q.pop(0) | |
if len(chunklist) > 0: | |
threading.Thread(target=speech_worker, daemon=True, args=(chunklist[1:],fname_list[1:])).start() | |
response = Client().audio.speech.create(model="tts-1", voice="fable", input=chunk, speed=0.85, response_format='wav') | |
with open(fname, 'wb') as fp: | |
fp.write(response.content) | |
return [fname, q] | |
def gen_output_audio(q, user): | |
try: | |
fname = q.pop(0) | |
except: | |
final_clean_up(user) | |
return [None, gr.Audio(sources=None)] | |
if not os.path.exists(fname): | |
sleep(3) | |
if not os.path.exists(fname): | |
response = Client().audio.speech.create(model="tts-1", voice="fable", | |
input='Sorry, text-to-speech is responding too slow right now', speed=0.85, response_format='wav') | |
with open(fname, 'wb') as fp: | |
fp.write(response.content) | |
q = [] | |
return [fname, q] | |
gr.Markdown('# GPT Chat') | |
gr.Markdown('Enter user name & password. Tap "Help & Hints" button for more instructions.') | |
with gr.Row(): | |
user_window = gr.Textbox(label = "User Name") | |
user_window.blur(fn=update_user, inputs=user_window, outputs=[user, user_window]) | |
pwd_window = gr.Textbox(label = "Password") | |
pwd_window.blur(updatePassword, inputs = pwd_window, outputs = [password, pwd_window]) | |
help_button = gr.Button(value='Help & Hints') | |
with gr.Row(): | |
audio_widget = gr.Audio(type='filepath', format='wav',waveform_options=gr.WaveformOptions( | |
show_recording_waveform=True), sources=['microphone'], scale = 3, label="Prompt/Question Voice Entry", max_length=120) | |
reset_button = gr.ClearButton(value="Reset Voice Entry", scale=1) #new_func1() | |
with gr.Row(): | |
clear_button = gr.Button(value="Restart Conversation") | |
# gpt_chooser=gr.Radio(choices=[("GPT-3.5","gpt-3.5-turbo"),("GPT-4o","gpt-4o-mini")], | |
# value="gpt-3.5-turbo", label="GPT Model", interactive=True) | |
button_do_image = gr.Button(value='Make Image') | |
button_get_image = gr.Button(value='Upload Image to Analyze') | |
speak_output = gr.Button(value="Speak Dialog", visible=True) | |
submit_button = gr.Button(value="Submit Prompt/Question") | |
prompt_window = gr.Textbox(label = "Prompt or Question") | |
gr.Markdown('### **Dialog:**') | |
output_window = gr.Markdown(container=True) | |
with gr.Row(): | |
with gr.Column(): | |
image_window2 = gr.Image(visible=False, interactive=True, label='Image to Analyze', type='filepath') | |
with gr.Column(): | |
image_window = gr.Image(visible=False, label='Generated Image') | |
with gr.Row(): | |
# plot = gr.Plot(visible=False) | |
plot = gr.LinePlot(test_plot_df(), x="month", y="value", visible=False, label="Portfolio Value History") | |
submit_button.click(chat, | |
inputs=[prompt_window, user_window, password, history, output_window, model, uploaded_image_file], | |
outputs=[history, output_window, prompt_window, model, uploaded_image_file, plot]) | |
clear_button.click(fn=new_conversation, inputs=user_window, | |
outputs=[prompt_window, history, output_window, image_window, image_window2, uploaded_image_file, plot]) | |
audio_widget.stop_recording(fn=transcribe, inputs=[user_window, password, audio_widget], | |
outputs=[prompt_window]) | |
audio_widget.pause_recording(fn=pause_message, outputs=[prompt_window]) | |
reset_button.add(audio_widget) | |
audio_out = gr.Audio(autoplay=True, visible=False) | |
audio_out.stop(fn=gen_output_audio, inputs=[q, user_window], outputs = [audio_out, q]) | |
speak_output.click(fn=initial_audio_output, inputs=[output_window, user_window], outputs=[audio_out, q]) | |
# output_window.change(fn=set_speak_button, inputs=output_window,outputs=speak_output) | |
button_do_image.click(fn=make_image, inputs=[prompt_window,user_window, password],outputs=[image_window, output_window]) | |
image_window.change(fn=delete_image, inputs=[user]) | |
help_button.click(fn=show_help, outputs=output_window) | |
button_get_image.click(fn=upload_image,inputs = [prompt_window, user, password], outputs = [image_window2, output_window]) | |
image_window2.upload(fn=load_image, inputs=[image_window2, user], outputs=[uploaded_image_file, output_window]) | |
# demo.unload(final_clean_up(user)) | |
demo.launch(share=True, allowed_paths=[dataDir], ssr_mode=False) | |