Upload 6 files
Browse files- .gitattributes +1 -0
- Twitter_Sentiment_analysis.ipynb +637 -0
- Twitter_sentiment.py +53 -0
- app.py +46 -0
- count_vectorizer.pkl +3 -0
- nb_classifier.pkl +3 -0
- twitter_sentiment.csv +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
twitter_sentiment.csv filter=lfs diff=lfs merge=lfs -text
|
Twitter_Sentiment_analysis.ipynb
ADDED
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### **Twitter Sentiment Analysis**"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import re\n",
|
17 |
+
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
18 |
+
"from sklearn.model_selection import train_test_split\n",
|
19 |
+
"from sklearn.naive_bayes import MultinomialNB\n",
|
20 |
+
"import pickle\n",
|
21 |
+
"from sklearn.metrics import accuracy_score"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 2,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"import warnings\n",
|
31 |
+
"warnings.filterwarnings('ignore')\n",
|
32 |
+
"\n",
|
33 |
+
"import pandas as pd "
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 20,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [
|
41 |
+
{
|
42 |
+
"data": {
|
43 |
+
"text/html": [
|
44 |
+
"<div>\n",
|
45 |
+
"<style scoped>\n",
|
46 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
47 |
+
" vertical-align: middle;\n",
|
48 |
+
" }\n",
|
49 |
+
"\n",
|
50 |
+
" .dataframe tbody tr th {\n",
|
51 |
+
" vertical-align: top;\n",
|
52 |
+
" }\n",
|
53 |
+
"\n",
|
54 |
+
" .dataframe thead th {\n",
|
55 |
+
" text-align: right;\n",
|
56 |
+
" }\n",
|
57 |
+
"</style>\n",
|
58 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
59 |
+
" <thead>\n",
|
60 |
+
" <tr style=\"text-align: right;\">\n",
|
61 |
+
" <th></th>\n",
|
62 |
+
" <th>clean_text</th>\n",
|
63 |
+
" <th>category</th>\n",
|
64 |
+
" </tr>\n",
|
65 |
+
" </thead>\n",
|
66 |
+
" <tbody>\n",
|
67 |
+
" <tr>\n",
|
68 |
+
" <th>0</th>\n",
|
69 |
+
" <td>when modi promised βminimum government maximum...</td>\n",
|
70 |
+
" <td>-1.0</td>\n",
|
71 |
+
" </tr>\n",
|
72 |
+
" <tr>\n",
|
73 |
+
" <th>1</th>\n",
|
74 |
+
" <td>talk all the nonsense and continue all the dra...</td>\n",
|
75 |
+
" <td>0.0</td>\n",
|
76 |
+
" </tr>\n",
|
77 |
+
" <tr>\n",
|
78 |
+
" <th>2</th>\n",
|
79 |
+
" <td>what did just say vote for modi welcome bjp t...</td>\n",
|
80 |
+
" <td>1.0</td>\n",
|
81 |
+
" </tr>\n",
|
82 |
+
" <tr>\n",
|
83 |
+
" <th>3</th>\n",
|
84 |
+
" <td>asking his supporters prefix chowkidar their n...</td>\n",
|
85 |
+
" <td>1.0</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>4</th>\n",
|
89 |
+
" <td>answer who among these the most powerful world...</td>\n",
|
90 |
+
" <td>1.0</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" </tbody>\n",
|
93 |
+
"</table>\n",
|
94 |
+
"</div>"
|
95 |
+
],
|
96 |
+
"text/plain": [
|
97 |
+
" clean_text category\n",
|
98 |
+
"0 when modi promised βminimum government maximum... -1.0\n",
|
99 |
+
"1 talk all the nonsense and continue all the dra... 0.0\n",
|
100 |
+
"2 what did just say vote for modi welcome bjp t... 1.0\n",
|
101 |
+
"3 asking his supporters prefix chowkidar their n... 1.0\n",
|
102 |
+
"4 answer who among these the most powerful world... 1.0"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"execution_count": 20,
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "execute_result"
|
108 |
+
}
|
109 |
+
],
|
110 |
+
"source": [
|
111 |
+
"df = pd.read_csv('./Twitter_Data.csv' )\n",
|
112 |
+
"df.head()"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 4,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"data": {
|
122 |
+
"text/plain": [
|
123 |
+
"(75682, 3)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
"execution_count": 4,
|
127 |
+
"metadata": {},
|
128 |
+
"output_type": "execute_result"
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"source": [
|
132 |
+
"df.shape"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "markdown",
|
137 |
+
"metadata": {},
|
138 |
+
"source": [
|
139 |
+
"**drop unnecessary columns**"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 5,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [],
|
147 |
+
"source": [
|
148 |
+
"df = df[[2,3]].reset_index(drop=True)"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 6,
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [
|
156 |
+
{
|
157 |
+
"data": {
|
158 |
+
"text/html": [
|
159 |
+
"<div>\n",
|
160 |
+
"<style scoped>\n",
|
161 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
162 |
+
" vertical-align: middle;\n",
|
163 |
+
" }\n",
|
164 |
+
"\n",
|
165 |
+
" .dataframe tbody tr th {\n",
|
166 |
+
" vertical-align: top;\n",
|
167 |
+
" }\n",
|
168 |
+
"\n",
|
169 |
+
" .dataframe thead th {\n",
|
170 |
+
" text-align: right;\n",
|
171 |
+
" }\n",
|
172 |
+
"</style>\n",
|
173 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
174 |
+
" <thead>\n",
|
175 |
+
" <tr style=\"text-align: right;\">\n",
|
176 |
+
" <th></th>\n",
|
177 |
+
" <th>2</th>\n",
|
178 |
+
" <th>3</th>\n",
|
179 |
+
" </tr>\n",
|
180 |
+
" </thead>\n",
|
181 |
+
" <tbody>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>0</th>\n",
|
184 |
+
" <td>Positive</td>\n",
|
185 |
+
" <td>im getting on borderlands and i will murder yo...</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>1</th>\n",
|
189 |
+
" <td>Positive</td>\n",
|
190 |
+
" <td>I am coming to the borders and I will kill you...</td>\n",
|
191 |
+
" </tr>\n",
|
192 |
+
" <tr>\n",
|
193 |
+
" <th>2</th>\n",
|
194 |
+
" <td>Positive</td>\n",
|
195 |
+
" <td>im getting on borderlands and i will kill you ...</td>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" <tr>\n",
|
198 |
+
" <th>3</th>\n",
|
199 |
+
" <td>Positive</td>\n",
|
200 |
+
" <td>im coming on borderlands and i will murder you...</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" <tr>\n",
|
203 |
+
" <th>4</th>\n",
|
204 |
+
" <td>Positive</td>\n",
|
205 |
+
" <td>im getting on borderlands 2 and i will murder ...</td>\n",
|
206 |
+
" </tr>\n",
|
207 |
+
" </tbody>\n",
|
208 |
+
"</table>\n",
|
209 |
+
"</div>"
|
210 |
+
],
|
211 |
+
"text/plain": [
|
212 |
+
" 2 3\n",
|
213 |
+
"0 Positive im getting on borderlands and i will murder yo...\n",
|
214 |
+
"1 Positive I am coming to the borders and I will kill you...\n",
|
215 |
+
"2 Positive im getting on borderlands and i will kill you ...\n",
|
216 |
+
"3 Positive im coming on borderlands and i will murder you...\n",
|
217 |
+
"4 Positive im getting on borderlands 2 and i will murder ..."
|
218 |
+
]
|
219 |
+
},
|
220 |
+
"execution_count": 6,
|
221 |
+
"metadata": {},
|
222 |
+
"output_type": "execute_result"
|
223 |
+
}
|
224 |
+
],
|
225 |
+
"source": [
|
226 |
+
"df.head()"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 7,
|
232 |
+
"metadata": {},
|
233 |
+
"outputs": [
|
234 |
+
{
|
235 |
+
"data": {
|
236 |
+
"text/html": [
|
237 |
+
"<div>\n",
|
238 |
+
"<style scoped>\n",
|
239 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
240 |
+
" vertical-align: middle;\n",
|
241 |
+
" }\n",
|
242 |
+
"\n",
|
243 |
+
" .dataframe tbody tr th {\n",
|
244 |
+
" vertical-align: top;\n",
|
245 |
+
" }\n",
|
246 |
+
"\n",
|
247 |
+
" .dataframe thead th {\n",
|
248 |
+
" text-align: right;\n",
|
249 |
+
" }\n",
|
250 |
+
"</style>\n",
|
251 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
252 |
+
" <thead>\n",
|
253 |
+
" <tr style=\"text-align: right;\">\n",
|
254 |
+
" <th></th>\n",
|
255 |
+
" <th>sentiments</th>\n",
|
256 |
+
" <th>text</th>\n",
|
257 |
+
" </tr>\n",
|
258 |
+
" </thead>\n",
|
259 |
+
" <tbody>\n",
|
260 |
+
" <tr>\n",
|
261 |
+
" <th>0</th>\n",
|
262 |
+
" <td>Positive</td>\n",
|
263 |
+
" <td>im getting on borderlands and i will murder yo...</td>\n",
|
264 |
+
" </tr>\n",
|
265 |
+
" <tr>\n",
|
266 |
+
" <th>1</th>\n",
|
267 |
+
" <td>Positive</td>\n",
|
268 |
+
" <td>I am coming to the borders and I will kill you...</td>\n",
|
269 |
+
" </tr>\n",
|
270 |
+
" <tr>\n",
|
271 |
+
" <th>2</th>\n",
|
272 |
+
" <td>Positive</td>\n",
|
273 |
+
" <td>im getting on borderlands and i will kill you ...</td>\n",
|
274 |
+
" </tr>\n",
|
275 |
+
" <tr>\n",
|
276 |
+
" <th>3</th>\n",
|
277 |
+
" <td>Positive</td>\n",
|
278 |
+
" <td>im coming on borderlands and i will murder you...</td>\n",
|
279 |
+
" </tr>\n",
|
280 |
+
" <tr>\n",
|
281 |
+
" <th>4</th>\n",
|
282 |
+
" <td>Positive</td>\n",
|
283 |
+
" <td>im getting on borderlands 2 and i will murder ...</td>\n",
|
284 |
+
" </tr>\n",
|
285 |
+
" </tbody>\n",
|
286 |
+
"</table>\n",
|
287 |
+
"</div>"
|
288 |
+
],
|
289 |
+
"text/plain": [
|
290 |
+
" sentiments text\n",
|
291 |
+
"0 Positive im getting on borderlands and i will murder yo...\n",
|
292 |
+
"1 Positive I am coming to the borders and I will kill you...\n",
|
293 |
+
"2 Positive im getting on borderlands and i will kill you ...\n",
|
294 |
+
"3 Positive im coming on borderlands and i will murder you...\n",
|
295 |
+
"4 Positive im getting on borderlands 2 and i will murder ..."
|
296 |
+
]
|
297 |
+
},
|
298 |
+
"execution_count": 7,
|
299 |
+
"metadata": {},
|
300 |
+
"output_type": "execute_result"
|
301 |
+
}
|
302 |
+
],
|
303 |
+
"source": [
|
304 |
+
"# df.columns = ['sentiments','text']\n",
|
305 |
+
"df.rename(columns={2 : \"sentiments\" , 3 : \"text\"} , inplace= True)\n",
|
306 |
+
"df.head()"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"cell_type": "code",
|
311 |
+
"execution_count": 8,
|
312 |
+
"metadata": {},
|
313 |
+
"outputs": [
|
314 |
+
{
|
315 |
+
"name": "stdout",
|
316 |
+
"output_type": "stream",
|
317 |
+
"text": [
|
318 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
319 |
+
"RangeIndex: 75682 entries, 0 to 75681\n",
|
320 |
+
"Data columns (total 2 columns):\n",
|
321 |
+
" # Column Non-Null Count Dtype \n",
|
322 |
+
"--- ------ -------------- ----- \n",
|
323 |
+
" 0 sentiments 75682 non-null object\n",
|
324 |
+
" 1 text 74996 non-null object\n",
|
325 |
+
"dtypes: object(2)\n",
|
326 |
+
"memory usage: 1.2+ MB\n"
|
327 |
+
]
|
328 |
+
}
|
329 |
+
],
|
330 |
+
"source": [
|
331 |
+
"df.info() # to see data types"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": 9,
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"df.isna().sum()\n",
|
341 |
+
"df.dropna(inplace= True)"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": 10,
|
347 |
+
"metadata": {},
|
348 |
+
"outputs": [
|
349 |
+
{
|
350 |
+
"data": {
|
351 |
+
"text/html": [
|
352 |
+
"<div>\n",
|
353 |
+
"<style scoped>\n",
|
354 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
355 |
+
" vertical-align: middle;\n",
|
356 |
+
" }\n",
|
357 |
+
"\n",
|
358 |
+
" .dataframe tbody tr th {\n",
|
359 |
+
" vertical-align: top;\n",
|
360 |
+
" }\n",
|
361 |
+
"\n",
|
362 |
+
" .dataframe thead th {\n",
|
363 |
+
" text-align: right;\n",
|
364 |
+
" }\n",
|
365 |
+
"</style>\n",
|
366 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
367 |
+
" <thead>\n",
|
368 |
+
" <tr style=\"text-align: right;\">\n",
|
369 |
+
" <th></th>\n",
|
370 |
+
" <th>sentiments</th>\n",
|
371 |
+
" <th>text</th>\n",
|
372 |
+
" </tr>\n",
|
373 |
+
" </thead>\n",
|
374 |
+
" <tbody>\n",
|
375 |
+
" <tr>\n",
|
376 |
+
" <th>0</th>\n",
|
377 |
+
" <td>Positive</td>\n",
|
378 |
+
" <td>im getting on borderlands and i will murder yo...</td>\n",
|
379 |
+
" </tr>\n",
|
380 |
+
" <tr>\n",
|
381 |
+
" <th>1</th>\n",
|
382 |
+
" <td>Positive</td>\n",
|
383 |
+
" <td>I am coming to the borders and I will kill you...</td>\n",
|
384 |
+
" </tr>\n",
|
385 |
+
" <tr>\n",
|
386 |
+
" <th>2</th>\n",
|
387 |
+
" <td>Positive</td>\n",
|
388 |
+
" <td>im getting on borderlands and i will kill you ...</td>\n",
|
389 |
+
" </tr>\n",
|
390 |
+
" <tr>\n",
|
391 |
+
" <th>3</th>\n",
|
392 |
+
" <td>Positive</td>\n",
|
393 |
+
" <td>im coming on borderlands and i will murder you...</td>\n",
|
394 |
+
" </tr>\n",
|
395 |
+
" <tr>\n",
|
396 |
+
" <th>4</th>\n",
|
397 |
+
" <td>Positive</td>\n",
|
398 |
+
" <td>im getting on borderlands 2 and i will murder ...</td>\n",
|
399 |
+
" </tr>\n",
|
400 |
+
" </tbody>\n",
|
401 |
+
"</table>\n",
|
402 |
+
"</div>"
|
403 |
+
],
|
404 |
+
"text/plain": [
|
405 |
+
" sentiments text\n",
|
406 |
+
"0 Positive im getting on borderlands and i will murder yo...\n",
|
407 |
+
"1 Positive I am coming to the borders and I will kill you...\n",
|
408 |
+
"2 Positive im getting on borderlands and i will kill you ...\n",
|
409 |
+
"3 Positive im coming on borderlands and i will murder you...\n",
|
410 |
+
"4 Positive im getting on borderlands 2 and i will murder ..."
|
411 |
+
]
|
412 |
+
},
|
413 |
+
"execution_count": 10,
|
414 |
+
"metadata": {},
|
415 |
+
"output_type": "execute_result"
|
416 |
+
}
|
417 |
+
],
|
418 |
+
"source": [
|
419 |
+
"df.head()"
|
420 |
+
]
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"cell_type": "code",
|
424 |
+
"execution_count": 11,
|
425 |
+
"metadata": {},
|
426 |
+
"outputs": [],
|
427 |
+
"source": [
|
428 |
+
"def process_text(text):\n",
|
429 |
+
" text = text.lower()\n",
|
430 |
+
" text = re.sub(f'http\\S+','',text)\n",
|
431 |
+
" text = re.sub(r'@[a-zA-Z0-9_]+','',text)\n",
|
432 |
+
" text = re.sub(r'#','',text)\n",
|
433 |
+
" text = re.sub(r'[^a-zA-Z\\S]','',text)\n",
|
434 |
+
" return text"
|
435 |
+
]
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"cell_type": "code",
|
439 |
+
"execution_count": 12,
|
440 |
+
"metadata": {},
|
441 |
+
"outputs": [],
|
442 |
+
"source": [
|
443 |
+
"df['clean_text'] = df['text'].apply(process_text)"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "code",
|
448 |
+
"execution_count": 13,
|
449 |
+
"metadata": {},
|
450 |
+
"outputs": [
|
451 |
+
{
|
452 |
+
"data": {
|
453 |
+
"text/html": [
|
454 |
+
"<div>\n",
|
455 |
+
"<style scoped>\n",
|
456 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
457 |
+
" vertical-align: middle;\n",
|
458 |
+
" }\n",
|
459 |
+
"\n",
|
460 |
+
" .dataframe tbody tr th {\n",
|
461 |
+
" vertical-align: top;\n",
|
462 |
+
" }\n",
|
463 |
+
"\n",
|
464 |
+
" .dataframe thead th {\n",
|
465 |
+
" text-align: right;\n",
|
466 |
+
" }\n",
|
467 |
+
"</style>\n",
|
468 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
469 |
+
" <thead>\n",
|
470 |
+
" <tr style=\"text-align: right;\">\n",
|
471 |
+
" <th></th>\n",
|
472 |
+
" <th>sentiments</th>\n",
|
473 |
+
" <th>text</th>\n",
|
474 |
+
" <th>clean_text</th>\n",
|
475 |
+
" </tr>\n",
|
476 |
+
" </thead>\n",
|
477 |
+
" <tbody>\n",
|
478 |
+
" <tr>\n",
|
479 |
+
" <th>0</th>\n",
|
480 |
+
" <td>Positive</td>\n",
|
481 |
+
" <td>im getting on borderlands and i will murder yo...</td>\n",
|
482 |
+
" <td>imgettingonborderlandsandiwillmurderyouall,</td>\n",
|
483 |
+
" </tr>\n",
|
484 |
+
" <tr>\n",
|
485 |
+
" <th>1</th>\n",
|
486 |
+
" <td>Positive</td>\n",
|
487 |
+
" <td>I am coming to the borders and I will kill you...</td>\n",
|
488 |
+
" <td>iamcomingtothebordersandiwillkillyouall,</td>\n",
|
489 |
+
" </tr>\n",
|
490 |
+
" <tr>\n",
|
491 |
+
" <th>2</th>\n",
|
492 |
+
" <td>Positive</td>\n",
|
493 |
+
" <td>im getting on borderlands and i will kill you ...</td>\n",
|
494 |
+
" <td>imgettingonborderlandsandiwillkillyouall,</td>\n",
|
495 |
+
" </tr>\n",
|
496 |
+
" <tr>\n",
|
497 |
+
" <th>3</th>\n",
|
498 |
+
" <td>Positive</td>\n",
|
499 |
+
" <td>im coming on borderlands and i will murder you...</td>\n",
|
500 |
+
" <td>imcomingonborderlandsandiwillmurderyouall,</td>\n",
|
501 |
+
" </tr>\n",
|
502 |
+
" <tr>\n",
|
503 |
+
" <th>4</th>\n",
|
504 |
+
" <td>Positive</td>\n",
|
505 |
+
" <td>im getting on borderlands 2 and i will murder ...</td>\n",
|
506 |
+
" <td>imgettingonborderlands2andiwillmurderyoumeall,</td>\n",
|
507 |
+
" </tr>\n",
|
508 |
+
" </tbody>\n",
|
509 |
+
"</table>\n",
|
510 |
+
"</div>"
|
511 |
+
],
|
512 |
+
"text/plain": [
|
513 |
+
" sentiments text \\\n",
|
514 |
+
"0 Positive im getting on borderlands and i will murder yo... \n",
|
515 |
+
"1 Positive I am coming to the borders and I will kill you... \n",
|
516 |
+
"2 Positive im getting on borderlands and i will kill you ... \n",
|
517 |
+
"3 Positive im coming on borderlands and i will murder you... \n",
|
518 |
+
"4 Positive im getting on borderlands 2 and i will murder ... \n",
|
519 |
+
"\n",
|
520 |
+
" clean_text \n",
|
521 |
+
"0 imgettingonborderlandsandiwillmurderyouall, \n",
|
522 |
+
"1 iamcomingtothebordersandiwillkillyouall, \n",
|
523 |
+
"2 imgettingonborderlandsandiwillkillyouall, \n",
|
524 |
+
"3 imcomingonborderlandsandiwillmurderyouall, \n",
|
525 |
+
"4 imgettingonborderlands2andiwillmurderyoumeall, "
|
526 |
+
]
|
527 |
+
},
|
528 |
+
"execution_count": 13,
|
529 |
+
"metadata": {},
|
530 |
+
"output_type": "execute_result"
|
531 |
+
}
|
532 |
+
],
|
533 |
+
"source": [
|
534 |
+
"df.head()"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "code",
|
539 |
+
"execution_count": 14,
|
540 |
+
"metadata": {},
|
541 |
+
"outputs": [
|
542 |
+
{
|
543 |
+
"data": {
|
544 |
+
"text/plain": [
|
545 |
+
"sentiments\n",
|
546 |
+
"Negative 22624\n",
|
547 |
+
"Positive 20932\n",
|
548 |
+
"Neutral 18393\n",
|
549 |
+
"Irrelevant 13047\n",
|
550 |
+
"Name: count, dtype: int64"
|
551 |
+
]
|
552 |
+
},
|
553 |
+
"execution_count": 14,
|
554 |
+
"metadata": {},
|
555 |
+
"output_type": "execute_result"
|
556 |
+
}
|
557 |
+
],
|
558 |
+
"source": [
|
559 |
+
"df['sentiments'].value_counts()"
|
560 |
+
]
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"cell_type": "code",
|
564 |
+
"execution_count": 15,
|
565 |
+
"metadata": {},
|
566 |
+
"outputs": [],
|
567 |
+
"source": [
|
568 |
+
"count_vectorizer = CountVectorizer(max_features=5000)\n",
|
569 |
+
"count_matrix = count_vectorizer.fit_transform(df['clean_text'])"
|
570 |
+
]
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"cell_type": "code",
|
574 |
+
"execution_count": 16,
|
575 |
+
"metadata": {},
|
576 |
+
"outputs": [],
|
577 |
+
"source": [
|
578 |
+
"X_train , X_test , y_train , y_test = train_test_split(count_matrix, df['clean_text'],test_size=0.2 , random_state=42)"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"execution_count": 17,
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [],
|
586 |
+
"source": [
|
587 |
+
"# nb_classifier = MultinomialNB()\n",
|
588 |
+
"# nb_classifier.fit(X_train , y_train)"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"cell_type": "code",
|
593 |
+
"execution_count": 18,
|
594 |
+
"metadata": {},
|
595 |
+
"outputs": [],
|
596 |
+
"source": [
|
597 |
+
"# y_pred = nb_classifier.predict(X_test)\n",
|
598 |
+
"# accuracy = accuracy_score(y_test , y_pred)"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"cell_type": "code",
|
603 |
+
"execution_count": null,
|
604 |
+
"metadata": {},
|
605 |
+
"outputs": [],
|
606 |
+
"source": []
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"cell_type": "code",
|
610 |
+
"execution_count": null,
|
611 |
+
"metadata": {},
|
612 |
+
"outputs": [],
|
613 |
+
"source": []
|
614 |
+
}
|
615 |
+
],
|
616 |
+
"metadata": {
|
617 |
+
"kernelspec": {
|
618 |
+
"display_name": "Python 3",
|
619 |
+
"language": "python",
|
620 |
+
"name": "python3"
|
621 |
+
},
|
622 |
+
"language_info": {
|
623 |
+
"codemirror_mode": {
|
624 |
+
"name": "ipython",
|
625 |
+
"version": 3
|
626 |
+
},
|
627 |
+
"file_extension": ".py",
|
628 |
+
"mimetype": "text/x-python",
|
629 |
+
"name": "python",
|
630 |
+
"nbconvert_exporter": "python",
|
631 |
+
"pygments_lexer": "ipython3",
|
632 |
+
"version": "3.12.8"
|
633 |
+
}
|
634 |
+
},
|
635 |
+
"nbformat": 4,
|
636 |
+
"nbformat_minor": 2
|
637 |
+
}
|
Twitter_sentiment.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.naive_bayes import MultinomialNB
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
import pandas as pd
|
7 |
+
import warnings
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
+
|
12 |
+
# Load dataset
|
13 |
+
df = pd.read_csv('./twitter_sentiment.csv', header=None, index_col=0)
|
14 |
+
df = df[[2, 3]].reset_index(drop=True)
|
15 |
+
df.rename(columns={2: "sentiments", 3: "text"}, inplace=True)
|
16 |
+
|
17 |
+
# Drop missing values
|
18 |
+
df.dropna(inplace=True)
|
19 |
+
|
20 |
+
# Preprocess text
|
21 |
+
def process_text(text):
|
22 |
+
text = text.lower()
|
23 |
+
text = re.sub(r'http\S+', '', text)
|
24 |
+
text = re.sub(r'@[a-zA-Z0-9_]+', '', text)
|
25 |
+
text = re.sub(r'#', '', text)
|
26 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
27 |
+
return text
|
28 |
+
|
29 |
+
df['clean_text'] = df['text'].apply(process_text)
|
30 |
+
|
31 |
+
# Vectorize text
|
32 |
+
count_vectorizer = CountVectorizer(max_features=5000)
|
33 |
+
count_matrix = count_vectorizer.fit_transform(df['clean_text'])
|
34 |
+
|
35 |
+
# Split data
|
36 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
37 |
+
count_matrix, df['sentiments'], test_size=0.2, random_state=42
|
38 |
+
)
|
39 |
+
|
40 |
+
# Train model
|
41 |
+
nb_classifier = MultinomialNB()
|
42 |
+
nb_classifier.fit(X_train, y_train)
|
43 |
+
|
44 |
+
# Predict and evaluate
|
45 |
+
y_pred = nb_classifier.predict(X_test)
|
46 |
+
accuracy = accuracy_score(y_test, y_pred)
|
47 |
+
print("Accuracy:", accuracy)
|
48 |
+
|
49 |
+
with open('count_vectorizer.pkl','wb') as vectorizer_file:
|
50 |
+
pickle.dump(count_vectorizer , vectorizer_file)
|
51 |
+
|
52 |
+
with open('nb_classifier.pkl','wb') as classifier_file:
|
53 |
+
pickle.dump(nb_classifier , classifier_file)
|
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import re
|
4 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
5 |
+
|
6 |
+
with open('count_vectorizer.pkl','rb')as vectorizer_file:
|
7 |
+
count_vectorizer = pickle.load(vectorizer_file)
|
8 |
+
|
9 |
+
with open('nb_classifier.pkl','rb')as classifier_file:
|
10 |
+
nb_classifier = pickle.load(classifier_file)
|
11 |
+
|
12 |
+
def process_text(text):
|
13 |
+
text = text.lower()
|
14 |
+
text = re.sub(r'http\S+', '', text)
|
15 |
+
text = re.sub(r'@[a-zA-Z0-9_]+', '', text)
|
16 |
+
text = re.sub(r'#', '', text)
|
17 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
18 |
+
return text
|
19 |
+
|
20 |
+
sentiment_mapping = {
|
21 |
+
"Negative" : "Negative π",
|
22 |
+
"Positive" : "Positive π",
|
23 |
+
"Neutral" : "Neutral π",
|
24 |
+
"Irrelevant" : "Irrelevant π€·ββοΈ"
|
25 |
+
}
|
26 |
+
|
27 |
+
def main():
|
28 |
+
col1 , col2 , col3 ,col4 = st.columns([1,1,3,1])
|
29 |
+
with col3:
|
30 |
+
st.image("./image/pngwing.com (1).png" , width=100)
|
31 |
+
st.title("Twitter Sentiment Classifier")
|
32 |
+
st.write("Enter twitter tweet below :")
|
33 |
+
input_text = st.text_area("Input Text :","")
|
34 |
+
if st.button("Predict"):
|
35 |
+
cleaned_text = process_text(input_text)
|
36 |
+
vectorizer_text = count_vectorizer.transform([cleaned_text])
|
37 |
+
sentiment_prediction = nb_classifier.predict(vectorizer_text)[0]
|
38 |
+
|
39 |
+
predicted_sentiment = sentiment_mapping.get(sentiment_prediction , "Unknown Sentiment")
|
40 |
+
|
41 |
+
st.write("Predicted Sentimen :")
|
42 |
+
st.title(predicted_sentiment)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
main()
|
count_vectorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0283cf923e981e93aad9148b59bd974d6658ffb49fff332abd81bf0d5da693c6
|
3 |
+
size 141069
|
nb_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:020b96fa1ba1660e47bf4634550a7f019a3487205c07aaa4b62efc02f9281ad2
|
3 |
+
size 320788
|
twitter_sentiment.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17a94670bd8955bc3f5a740cd72797cd763c1ae5fdfea5eef619c1a28435c203
|
3 |
+
size 10489426
|