divyesh01 commited on
Commit
2ed7f35
Β·
verified Β·
1 Parent(s): e97cba6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -45
app.py CHANGED
@@ -1,46 +1,46 @@
1
- import streamlit as st
2
- import pickle
3
- import re
4
- from sklearn.feature_extraction.text import CountVectorizer
5
-
6
- with open('count_vectorizer.pkl','rb')as vectorizer_file:
7
- count_vectorizer = pickle.load(vectorizer_file)
8
-
9
- with open('nb_classifier.pkl','rb')as classifier_file:
10
- nb_classifier = pickle.load(classifier_file)
11
-
12
- def process_text(text):
13
- text = text.lower()
14
- text = re.sub(r'http\S+', '', text)
15
- text = re.sub(r'@[a-zA-Z0-9_]+', '', text)
16
- text = re.sub(r'#', '', text)
17
- text = re.sub(r'[^a-zA-Z\s]', '', text)
18
- return text
19
-
20
- sentiment_mapping = {
21
- "Negative" : "Negative πŸ˜”",
22
- "Positive" : "Positive 😊",
23
- "Neutral" : "Neutral πŸ™„",
24
- "Irrelevant" : "Irrelevant πŸ€·β€β™‚οΈ"
25
- }
26
-
27
- def main():
28
- col1 , col2 , col3 ,col4 = st.columns([1,1,3,1])
29
- with col3:
30
- st.image("./image/pngwing.com (1).png" , width=100)
31
- st.title("Twitter Sentiment Classifier")
32
- st.write("Enter twitter tweet below :")
33
- input_text = st.text_area("Input Text :","")
34
- if st.button("Predict"):
35
- cleaned_text = process_text(input_text)
36
- vectorizer_text = count_vectorizer.transform([cleaned_text])
37
- sentiment_prediction = nb_classifier.predict(vectorizer_text)[0]
38
-
39
- predicted_sentiment = sentiment_mapping.get(sentiment_prediction , "Unknown Sentiment")
40
-
41
- st.write("Predicted Sentimen :")
42
- st.title(predicted_sentiment)
43
-
44
-
45
- if __name__ == "__main__":
46
  main()
 
1
+ import streamlit as st
2
+ import pickle
3
+ import re
4
+ from sklearn.feature_extraction.text import CountVectorizer
5
+
6
+ with open('count_vectorizer.pkl','rb')as vectorizer_file:
7
+ count_vectorizer = pickle.load(vectorizer_file)
8
+
9
+ with open('nb_classifier.pkl','rb')as classifier_file:
10
+ nb_classifier = pickle.load(classifier_file)
11
+
12
+ def process_text(text):
13
+ text = text.lower()
14
+ text = re.sub(r'http\S+', '', text)
15
+ text = re.sub(r'@[a-zA-Z0-9_]+', '', text)
16
+ text = re.sub(r'#', '', text)
17
+ text = re.sub(r'[^a-zA-Z\s]', '', text)
18
+ return text
19
+
20
+ sentiment_mapping = {
21
+ "Negative" : "Negative πŸ˜”",
22
+ "Positive" : "Positive 😊",
23
+ "Neutral" : "Neutral πŸ™„",
24
+ "Irrelevant" : "Irrelevant πŸ€·β€β™‚οΈ"
25
+ }
26
+
27
+ def main():
28
+ col1 , col2 , col3 ,col4 = st.columns([1,1,3,1])
29
+ with col3:
30
+ st.image("./pngwing.com (1).png" , width=100)
31
+ st.title("Twitter Sentiment Classifier")
32
+ st.write("Enter twitter tweet below :")
33
+ input_text = st.text_area("Input Text :","")
34
+ if st.button("Predict"):
35
+ cleaned_text = process_text(input_text)
36
+ vectorizer_text = count_vectorizer.transform([cleaned_text])
37
+ sentiment_prediction = nb_classifier.predict(vectorizer_text)[0]
38
+
39
+ predicted_sentiment = sentiment_mapping.get(sentiment_prediction , "Unknown Sentiment")
40
+
41
+ st.write("Predicted Sentimen :")
42
+ st.title(predicted_sentiment)
43
+
44
+
45
+ if __name__ == "__main__":
46
  main()