import gradio as gr from fastai.vision.all import * import skimage from fastai.vision.all import PILImage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) img = img.resize((512, 512)) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} examples = ['image1.jpg', 'image2.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict, inputs=gr.components.Image(), outputs=gr.outputs.Label(num_top_classes=3), examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()