devdata commited on
Commit
71c7a7e
·
verified ·
1 Parent(s): 13160f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -6
app.py CHANGED
@@ -2,19 +2,26 @@ import gradio as gr
2
  from fastai.vision.all import *
3
  import skimage
4
  from fastai.vision.all import PILImage
 
5
 
6
  learn = load_learner('export.pkl')
7
 
8
  labels = learn.dls.vocab
9
 
10
-
11
  def predict(img):
12
- img = PILImage.create(img)
13
- img = img.resize((512, 512))
14
- pred,pred_idx,probs = learn.predict(img)
15
- return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
 
 
 
 
 
 
 
16
 
17
  examples = ['image1.jpg', 'image2.jpg']
18
 
19
  gr.Interface(fn=predict, inputs=gr.components.Image(), outputs=gr.components.Label(num_top_classes=3), examples=examples).launch()
20
-
 
2
  from fastai.vision.all import *
3
  import skimage
4
  from fastai.vision.all import PILImage
5
+ import datetime # Import datetime to generate unique filenames
6
 
7
  learn = load_learner('export.pkl')
8
 
9
  labels = learn.dls.vocab
10
 
 
11
  def predict(img):
12
+ img = PILImage.create(img)
13
+ img = img.resize((512, 512))
14
+ pred, pred_idx, probs = learn.predict(img)
15
+
16
+ # Check if the prediction is "elephant"
17
+ if pred == "elephant":
18
+ # Generate a unique filename using the current timestamp
19
+ filename = f"elephant_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.jpg"
20
+ # Save the image
21
+ img.save(filename)
22
+
23
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
24
 
25
  examples = ['image1.jpg', 'image2.jpg']
26
 
27
  gr.Interface(fn=predict, inputs=gr.components.Image(), outputs=gr.components.Label(num_top_classes=3), examples=examples).launch()