Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,26 @@ import gradio as gr
|
|
2 |
from fastai.vision.all import *
|
3 |
import skimage
|
4 |
from fastai.vision.all import PILImage
|
|
|
5 |
|
6 |
learn = load_learner('export.pkl')
|
7 |
|
8 |
labels = learn.dls.vocab
|
9 |
|
10 |
-
|
11 |
def predict(img):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
examples = ['image1.jpg', 'image2.jpg']
|
18 |
|
19 |
gr.Interface(fn=predict, inputs=gr.components.Image(), outputs=gr.components.Label(num_top_classes=3), examples=examples).launch()
|
20 |
-
|
|
|
2 |
from fastai.vision.all import *
|
3 |
import skimage
|
4 |
from fastai.vision.all import PILImage
|
5 |
+
import datetime # Import datetime to generate unique filenames
|
6 |
|
7 |
learn = load_learner('export.pkl')
|
8 |
|
9 |
labels = learn.dls.vocab
|
10 |
|
|
|
11 |
def predict(img):
|
12 |
+
img = PILImage.create(img)
|
13 |
+
img = img.resize((512, 512))
|
14 |
+
pred, pred_idx, probs = learn.predict(img)
|
15 |
+
|
16 |
+
# Check if the prediction is "elephant"
|
17 |
+
if pred == "elephant":
|
18 |
+
# Generate a unique filename using the current timestamp
|
19 |
+
filename = f"elephant_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.jpg"
|
20 |
+
# Save the image
|
21 |
+
img.save(filename)
|
22 |
+
|
23 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
24 |
|
25 |
examples = ['image1.jpg', 'image2.jpg']
|
26 |
|
27 |
gr.Interface(fn=predict, inputs=gr.components.Image(), outputs=gr.components.Label(num_top_classes=3), examples=examples).launch()
|
|