# -*- coding: utf-8 -*- """app.py Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1mHMq54a9glSyzg_CVIP0wshX9T8NUtmx """ import gradio as gr from transformers import pipeline pipe = pipeline(model="delarosajav95/HateSpeech-BETO-cased-v2") #function that Gradio will use to classify def classify_text(inputs): result = pipe(inputs, return_all_scores=True) output = [] label_mapping = { 'LABEL_0': 'Non-Hate Speech', 'LABEL_1': 'Hate Speech' } for i, predictions in enumerate(result): for pred in predictions: label = label_mapping.get(pred['label'], pred['label']) score = pred['score'] output.append(f"{label}: {score:.2%}") return "\n".join(output) #defining Gradio interface textbox = gr.Textbox(lines=3, placeholder="Type a Spanish statement, comment, or review for evaluation (e.g., 'Esas personas no merecen respeto.')", label="User Comment/Post:") output_box = gr.Textbox(label="Results:") iface = gr.Interface( fn=classify_text, inputs=textbox, outputs=output_box, live=True, title="Spanish Hate Speech Classifier for User Content", allow_flagging="never", ) # Launch the interface iface.launch()