Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024 DeepSeek. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
import os.path | |
# -*- coding:utf-8 -*- | |
from argparse import ArgumentParser | |
import spaces | |
import io | |
import sys | |
import base64 | |
from PIL import Image | |
import gradio as gr | |
import torch | |
from deepseek_vl2.serve.app_modules.gradio_utils import ( | |
cancel_outputing, | |
delete_last_conversation, | |
reset_state, | |
reset_textbox, | |
wrap_gen_fn, | |
) | |
from deepseek_vl2.serve.app_modules.overwrites import reload_javascript | |
from deepseek_vl2.serve.app_modules.presets import ( | |
CONCURRENT_COUNT, | |
MAX_EVENTS, | |
description, | |
description_top, | |
title | |
) | |
from deepseek_vl2.serve.app_modules.utils import ( | |
configure_logger, | |
is_variable_assigned, | |
strip_stop_words, | |
parse_ref_bbox, | |
pil_to_base64, | |
display_example | |
) | |
from deepseek_vl2.serve.inference import ( | |
convert_conversation_to_prompts, | |
deepseek_generate, | |
load_model, | |
) | |
from deepseek_vl2.models.conversation import SeparatorStyle | |
logger = configure_logger() | |
MODELS = [ | |
"DeepSeek-VL2-tiny", | |
"DeepSeek-VL2-small", | |
"DeepSeek-VL2", | |
"deepseek-ai/deepseek-vl2-tiny", | |
"deepseek-ai/deepseek-vl2-small", | |
"deepseek-ai/deepseek-vl2", | |
] | |
DEPLOY_MODELS = dict() | |
IMAGE_TOKEN = "<image>" | |
examples_list = [ | |
# visual grounding - 1 | |
[ | |
["./images/visual_grounding_1.jpeg"], | |
"<|ref|>The giraffe at the back.<|/ref|>", | |
], | |
# visual grounding - 2 | |
[ | |
["./images/visual_grounding_2.jpg"], | |
"找到<|ref|>淡定姐<|/ref|>", | |
], | |
# visual grounding - 3 | |
[ | |
["./images/visual_grounding_3.png"], | |
"Find all the <|ref|>Watermelon slices<|/ref|>", | |
], | |
# grounding conversation | |
[ | |
["./images/grounding_conversation_1.jpeg"], | |
"<|grounding|>I want to throw out the trash now, what should I do?", | |
], | |
# in-context visual grounding | |
[ | |
[ | |
"./images/incontext_visual_grounding_1.jpeg", | |
"./images/icl_vg_2.jpeg" | |
], | |
"<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image." | |
], | |
# vqa | |
[ | |
["./images/vqa_1.jpg"], | |
"Describe each stage of this image in detail", | |
], | |
# multi-images | |
[ | |
[ | |
"./images/multi_image_1.jpeg", | |
"./images/multi_image_2.jpeg", | |
"./images/multi_image_3.jpeg" | |
], | |
"能帮我用这几个食材做一道菜吗?", | |
] | |
] | |
def fetch_model(model_name: str, dtype=torch.bfloat16): | |
global args, DEPLOY_MODELS | |
if args.local_path: | |
model_path = args.local_path | |
else: | |
model_path = model_name | |
if model_name in DEPLOY_MODELS: | |
model_info = DEPLOY_MODELS[model_name] | |
print(f"{model_name} has been loaded.") | |
else: | |
print(f"{model_name} is loading...") | |
DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype) | |
print(f"Load {model_name} successfully...") | |
model_info = DEPLOY_MODELS[model_name] | |
return model_info | |
def generate_prompt_with_history( | |
text, images, history, vl_chat_processor, tokenizer, max_length=2048 | |
): | |
""" | |
Generate a prompt with history for the deepseek application. | |
Args: | |
text (str): The text prompt. | |
images (list[PIL.Image.Image]): The image prompt. | |
history (list): List of previous conversation messages. | |
tokenizer: The tokenizer used for encoding the prompt. | |
max_length (int): The maximum length of the prompt. | |
Returns: | |
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None. | |
""" | |
global IMAGE_TOKEN | |
sft_format = "deepseek" | |
user_role_ind = 0 | |
bot_role_ind = 1 | |
# Initialize conversation | |
conversation = vl_chat_processor.new_chat_template() | |
if history: | |
conversation.messages = history | |
if images is not None and len(images) > 0: | |
num_image_tags = text.count(IMAGE_TOKEN) | |
num_images = len(images) | |
if num_images > num_image_tags: | |
pad_image_tags = num_images - num_image_tags | |
image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags) | |
# append the <image> in a new line after the text prompt | |
text = image_tokens + "\n" + text | |
elif num_images < num_image_tags: | |
remove_image_tags = num_image_tags - num_images | |
text = text.replace(IMAGE_TOKEN, "", remove_image_tags) | |
# print(f"prompt = {text}, len(images) = {len(images)}") | |
text = (text, images) | |
conversation.append_message(conversation.roles[user_role_ind], text) | |
conversation.append_message(conversation.roles[bot_role_ind], "") | |
# Create a copy of the conversation to avoid history truncation in the UI | |
conversation_copy = conversation.copy() | |
logger.info("=" * 80) | |
logger.info(get_prompt(conversation)) | |
rounds = len(conversation.messages) // 2 | |
for _ in range(rounds): | |
current_prompt = get_prompt(conversation) | |
current_prompt = ( | |
current_prompt.replace("</s>", "") | |
if sft_format == "deepseek" | |
else current_prompt | |
) | |
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length: | |
return conversation_copy | |
if len(conversation.messages) % 2 != 0: | |
gr.Error("The messages between user and assistant are not paired.") | |
return | |
try: | |
for _ in range(2): # pop out two messages in a row | |
conversation.messages.pop(0) | |
except IndexError: | |
gr.Error("Input text processing failed, unable to respond in this round.") | |
return None | |
gr.Error("Prompt could not be generated within max_length limit.") | |
return None | |
def to_gradio_chatbot(conv): | |
"""Convert the conversation to gradio chatbot format.""" | |
ret = [] | |
for i, (role, msg) in enumerate(conv.messages[conv.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
msg, images = msg | |
if isinstance(images, list): | |
for j, image in enumerate(images): | |
if isinstance(image, str): | |
with open(image, "rb") as f: | |
data = f.read() | |
img_b64_str = base64.b64encode(data).decode() | |
image_str = (f'<img src="data:image/png;base64,{img_b64_str}" ' | |
f'alt="user upload image" style="max-width: 300px; height: auto;" />') | |
else: | |
image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400) | |
# replace the <image> tag in the message | |
msg = msg.replace(IMAGE_TOKEN, image_str, 1) | |
else: | |
pass | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def to_gradio_history(conv): | |
"""Convert the conversation to gradio history state.""" | |
return conv.messages[conv.offset:] | |
def get_prompt(conv) -> str: | |
"""Get the prompt for generation.""" | |
system_prompt = conv.system_template.format(system_message=conv.system_message) | |
if conv.sep_style == SeparatorStyle.DeepSeek: | |
seps = [conv.sep, conv.sep2] | |
if system_prompt == "" or system_prompt is None: | |
ret = "" | |
else: | |
ret = system_prompt + seps[0] | |
for i, (role, message) in enumerate(conv.messages): | |
if message: | |
if type(message) is tuple: # multimodal message | |
message, _ = message | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
return ret | |
else: | |
return conv.get_prompt() | |
def transfer_input(input_text, input_images): | |
print("transferring input text and input image") | |
return ( | |
input_text, | |
input_images, | |
gr.update(value=""), | |
gr.update(value=None), | |
gr.Button(visible=True) | |
) | |
# Specify a duration to avoid timeout | |
def predict( | |
text, | |
images, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
): | |
""" | |
Function to predict the response based on the user's input and selected model. | |
Parameters: | |
user_text (str): The input text from the user. | |
user_image (str): The input image from the user. | |
chatbot (str): The chatbot's name. | |
history (str): The history of the chat. | |
top_p (float): The top-p parameter for the model. | |
temperature (float): The temperature parameter for the model. | |
max_length_tokens (int): The maximum length of tokens for the model. | |
max_context_length_tokens (int): The maximum length of context tokens for the model. | |
model_select_dropdown (str): The selected model from the dropdown. | |
Returns: | |
generator: A generator that yields the chatbot outputs, history, and status. | |
""" | |
print("running the prediction function") | |
try: | |
tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown) | |
if text == "": | |
yield chatbot, history, "Empty context." | |
return | |
except KeyError: | |
yield [[text, "No Model Found"]], [], "No Model Found" | |
return | |
if images is None: | |
images = [] | |
# load images | |
pil_images = [] | |
for img_or_file in images: | |
try: | |
# load as pil image | |
if isinstance(images, Image.Image): | |
pil_images.append(img_or_file) | |
else: | |
image = Image.open(img_or_file.name).convert("RGB") | |
pil_images.append(image) | |
except Exception as e: | |
print(f"Error loading image: {e}") | |
conversation = generate_prompt_with_history( | |
text, | |
pil_images, | |
history, | |
vl_chat_processor, | |
tokenizer, | |
max_length=max_context_length_tokens, | |
) | |
all_conv, last_image = convert_conversation_to_prompts(conversation) | |
stop_words = conversation.stop_str | |
gradio_chatbot_output = to_gradio_chatbot(conversation) | |
full_response = "" | |
with torch.no_grad(): | |
for x in deepseek_generate( | |
conversations=all_conv, | |
vl_gpt=vl_gpt, | |
vl_chat_processor=vl_chat_processor, | |
tokenizer=tokenizer, | |
stop_words=stop_words, | |
max_length=max_length_tokens, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p, | |
chunk_size=args.chunk_size | |
): | |
full_response += x | |
response = strip_stop_words(full_response, stop_words) | |
conversation.update_last_message(response) | |
gradio_chatbot_output[-1][1] = response | |
# sys.stdout.write(x) | |
# sys.stdout.flush() | |
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." | |
if last_image is not None: | |
# TODO always render the last image's visual grounding image | |
vg_image = parse_ref_bbox(response, last_image) | |
if vg_image is not None: | |
vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400) | |
gradio_chatbot_output[-1][1] += vg_base64 | |
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." | |
print("flushed result to gradio") | |
torch.cuda.empty_cache() | |
if is_variable_assigned("x"): | |
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}") | |
print( | |
f"temperature: {temperature}, " | |
f"top_p: {top_p}, " | |
f"repetition_penalty: {repetition_penalty}, " | |
f"max_length_tokens: {max_length_tokens}" | |
) | |
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success" | |
# @wrap_gen_fn | |
def retry( | |
text, | |
images, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
): | |
if len(history) == 0: | |
yield (chatbot, history, "Empty context") | |
return | |
chatbot.pop() | |
history.pop() | |
text = history.pop()[-1] | |
if type(text) is tuple: | |
text, image = text | |
yield from predict( | |
text, | |
images, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
args.chunk_size | |
) | |
def preview_images(files): | |
if files is None: | |
return [] | |
image_paths = [] | |
for file in files: | |
# 使用 file.name 获取文件路径 | |
# image = Image.open(file.name) | |
image_paths.append(file.name) | |
return image_paths # 返回所有图片路径,用于预览 | |
def build_demo(args): | |
# fetch model | |
if not args.lazy_load: | |
fetch_model(args.model_name) | |
with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f: | |
customCSS = f.read() | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
history = gr.State([]) | |
input_text = gr.State() | |
input_images = gr.State() | |
with gr.Row(): | |
gr.HTML(title) | |
status_display = gr.Markdown("Success", elem_id="status_display") | |
gr.Markdown(description_top) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
elem_id="deepseek_chatbot", | |
show_share_button=True, | |
bubble_full_width=False, | |
height=600, | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
text_box = gr.Textbox( | |
show_label=False, placeholder="Enter text", container=False | |
) | |
with gr.Column( | |
min_width=70, | |
): | |
submitBtn = gr.Button("Send") | |
with gr.Column( | |
min_width=70, | |
): | |
cancelBtn = gr.Button("Stop") | |
with gr.Row(): | |
emptyBtn = gr.Button( | |
"🧹 New Conversation", | |
) | |
retryBtn = gr.Button("🔄 Regenerate") | |
delLastBtn = gr.Button("🗑️ Remove Last Turn") | |
with gr.Column(): | |
upload_images = gr.Files(file_types=["image"], show_label=True) | |
gallery = gr.Gallery(columns=[3], height="200px", show_label=True) | |
upload_images.change(preview_images, inputs=upload_images, outputs=gallery) | |
with gr.Tab(label="Parameter Setting") as parameter_row: | |
top_p = gr.Slider( | |
minimum=-0, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
interactive=True, | |
label="Top-p", | |
) | |
temperature = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.1, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
repetition_penalty = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
interactive=True, | |
label="Repetition penalty", | |
) | |
max_length_tokens = gr.Slider( | |
minimum=0, | |
maximum=4096, | |
value=2048, | |
step=8, | |
interactive=True, | |
label="Max Generation Tokens", | |
) | |
max_context_length_tokens = gr.Slider( | |
minimum=0, | |
maximum=8192, | |
value=4096, | |
step=128, | |
interactive=True, | |
label="Max History Tokens", | |
) | |
model_select_dropdown = gr.Dropdown( | |
label="Select Models", | |
choices=[args.model_name], | |
multiselect=False, | |
value=args.model_name, | |
interactive=True, | |
) | |
# show images, but not visible | |
show_images = gr.HTML(visible=False) | |
# show_images = gr.Image(type="pil", interactive=False, visible=False) | |
def format_examples(examples_list): | |
examples = [] | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
for images, texts in examples_list: | |
examples.append([images, display_example(images, current_dir), texts]) | |
return examples | |
gr.Examples( | |
examples=format_examples(examples_list), | |
inputs=[upload_images, show_images, text_box], | |
) | |
gr.Markdown(description) | |
input_widgets = [ | |
input_text, | |
input_images, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
] | |
output_widgets = [chatbot, history, status_display] | |
transfer_input_args = dict( | |
fn=transfer_input, | |
inputs=[text_box, upload_images], | |
outputs=[input_text, input_images, text_box, upload_images, submitBtn], | |
show_progress=True, | |
) | |
predict_args = dict( | |
fn=predict, | |
inputs=input_widgets, | |
outputs=output_widgets, | |
show_progress=True, | |
) | |
retry_args = dict( | |
fn=retry, | |
inputs=input_widgets, | |
outputs=output_widgets, | |
show_progress=True, | |
) | |
reset_args = dict( | |
fn=reset_textbox, inputs=[], outputs=[text_box, status_display] | |
) | |
predict_events = [ | |
text_box.submit(**transfer_input_args).then(**predict_args), | |
submitBtn.click(**transfer_input_args).then(**predict_args), | |
] | |
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True) | |
emptyBtn.click(**reset_args) | |
retryBtn.click(**retry_args) | |
delLastBtn.click( | |
delete_last_conversation, | |
[chatbot, history], | |
output_widgets, | |
show_progress=True, | |
) | |
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events) | |
return demo | |
if __name__ == "__main__": | |
parser = ArgumentParser() | |
parser.add_argument("--model_name", type=str, default="deepseek-ai/deepseek-vl2-small", choices=MODELS, help="model name") | |
parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional") | |
parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address") | |
parser.add_argument("--port", type=int, default=37913, help="port number") | |
parser.add_argument("--root_path", type=str, default="", help="root path") | |
parser.add_argument("--lazy_load", action='store_true') | |
parser.add_argument("--chunk_size", type=int, default=512, | |
help="chunk size for the model for prefiiling. " | |
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling." | |
"Otherwise, default value is -1, which means we do not use incremental_prefilling.") | |
args = parser.parse_args() | |
demo = build_demo(args) | |
demo.title = "DeepSeek-VL2-small Chatbot" | |
reload_javascript() | |
# concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS | |
demo.queue().launch( | |
favicon_path="deepseek_vl2/serve/assets/favicon.ico", | |
) | |