Commit
Β·
1564fda
1
Parent(s):
04743bf
Basic retrieval and generation
Browse files- app.py +49 -17
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import io
|
|
|
2 |
|
3 |
import streamlit as st
|
4 |
import torch
|
|
|
|
|
5 |
from PIL import Image
|
6 |
from transformers import (AutoModelForVision2Seq, AutoProcessor,
|
7 |
BitsAndBytesConfig)
|
@@ -9,9 +12,13 @@ from transformers.image_utils import load_image
|
|
9 |
|
10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@st.cache_resource # Streamlit Caching decorator
|
14 |
-
def
|
15 |
checkpoint = "HuggingFaceTB/SmolVLM-Instruct"
|
16 |
processor = AutoProcessor.from_pretrained(checkpoint)
|
17 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
@@ -20,51 +27,76 @@ def load_model():
|
|
20 |
#torch_dtype=torch.bfloat16,
|
21 |
quantization_config=quantization_config,
|
22 |
)
|
23 |
-
return model
|
24 |
-
|
25 |
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
# Home page UI
|
|
|
|
|
|
|
32 |
st.title("π Image Q&A with VLM")
|
33 |
-
|
34 |
-
|
35 |
"Ask something about the image",
|
36 |
placeholder="Can you describe me the image ?",
|
37 |
-
disabled=not
|
38 |
)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
# Create input messages
|
46 |
system_prompt = "You are an AI assistant. Your task is reply to user questions based on the provided image context."
|
47 |
-
|
48 |
{"role": "system", "content": system_prompt},
|
49 |
{
|
50 |
"role": "user",
|
51 |
"content": [
|
52 |
{"type": "image"},
|
53 |
-
{"type": "text", "text":
|
54 |
]
|
55 |
},
|
56 |
]
|
57 |
|
58 |
# Prepare inputs
|
59 |
-
prompt =
|
60 |
-
inputs =
|
61 |
inputs = inputs.to(DEVICE)
|
62 |
|
63 |
# Generate outputs
|
64 |
-
generated_ids =
|
65 |
-
|
|
|
|
|
66 |
generated_ids,
|
67 |
skip_special_tokens=True,
|
|
|
68 |
)
|
69 |
response = generated_texts[0]
|
70 |
|
|
|
1 |
import io
|
2 |
+
import os
|
3 |
|
4 |
import streamlit as st
|
5 |
import torch
|
6 |
+
from byaldi import RAGMultiModalModel
|
7 |
+
from pdf2image import convert_from_bytes
|
8 |
from PIL import Image
|
9 |
from transformers import (AutoModelForVision2Seq, AutoProcessor,
|
10 |
BitsAndBytesConfig)
|
|
|
12 |
|
13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
@st.cache_resource # Streamlit Caching decorator
|
16 |
+
def load_model_embedding():
|
17 |
+
docs_retrieval_model = RAGMultiModalModel.from_pretrained("vidore/colsmolvlm-alpha")
|
18 |
+
model_embedding = load_model_embedding()
|
19 |
|
20 |
@st.cache_resource # Streamlit Caching decorator
|
21 |
+
def load_model_vlm():
|
22 |
checkpoint = "HuggingFaceTB/SmolVLM-Instruct"
|
23 |
processor = AutoProcessor.from_pretrained(checkpoint)
|
24 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
|
|
27 |
#torch_dtype=torch.bfloat16,
|
28 |
quantization_config=quantization_config,
|
29 |
)
|
30 |
+
return model, processor
|
31 |
+
model_vlm, processor_vlm = load_model_vlm()
|
32 |
|
33 |
|
34 |
+
|
35 |
+
def save_images_to_local(dataset, output_folder="data/"):
|
36 |
+
os.makedirs(output_folder, exist_ok=True)
|
37 |
+
|
38 |
+
for image_id, image in enumerate(dataset):
|
39 |
+
#if isinstance(image, str):
|
40 |
+
# image = Image.open(image)
|
41 |
+
|
42 |
+
output_path = os.path.join(output_folder, f"image_{image_id}.png")
|
43 |
+
image.save(output_path, format="PNG")
|
44 |
+
|
45 |
|
46 |
|
47 |
# Home page UI
|
48 |
+
with st.sidebar:
|
49 |
+
"[Source Code](https://huggingface.co/spaces/deepakkarkala/multimodal-rag/tree/main)"
|
50 |
+
|
51 |
st.title("π Image Q&A with VLM")
|
52 |
+
uploaded_pdf = st.file_uploader("Upload PDF file", type=("pdf"))
|
53 |
+
query = st.text_input(
|
54 |
"Ask something about the image",
|
55 |
placeholder="Can you describe me the image ?",
|
56 |
+
disabled=not uploaded_pdf,
|
57 |
)
|
58 |
|
59 |
+
images = []
|
60 |
+
if uploaded_pdf:
|
61 |
+
images = convert_from_bytes(uploaded_pdf.getvalue())
|
62 |
+
save_images_to_local(images)
|
63 |
+
# index documents using the document retrieval model
|
64 |
+
model_embedding.index(
|
65 |
+
input_path="data/", index_name="image_index", store_collection_with_index=False, overwrite=True
|
66 |
+
)
|
67 |
|
68 |
+
|
69 |
+
|
70 |
+
if uploaded_pdf and query:
|
71 |
+
docs_retrieved = model_embedding.search(query, k=1)
|
72 |
+
image_similar_to_query = images[docs_retrieved[0]["doc_id"]]
|
73 |
|
74 |
# Create input messages
|
75 |
system_prompt = "You are an AI assistant. Your task is reply to user questions based on the provided image context."
|
76 |
+
chat_template = [
|
77 |
{"role": "system", "content": system_prompt},
|
78 |
{
|
79 |
"role": "user",
|
80 |
"content": [
|
81 |
{"type": "image"},
|
82 |
+
{"type": "text", "text": query}
|
83 |
]
|
84 |
},
|
85 |
]
|
86 |
|
87 |
# Prepare inputs
|
88 |
+
prompt = processor_vlm.apply_chat_template(chat_template, add_generation_prompt=True)
|
89 |
+
inputs = processor_vlm(text=prompt, images=[image_similar_to_query], return_tensors="pt")
|
90 |
inputs = inputs.to(DEVICE)
|
91 |
|
92 |
# Generate outputs
|
93 |
+
generated_ids = model_vlm.generate(**inputs, max_new_tokens=500)
|
94 |
+
#generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
95 |
+
|
96 |
+
generated_texts = processor_vlm.batch_decode(
|
97 |
generated_ids,
|
98 |
skip_special_tokens=True,
|
99 |
+
clean_up_tokenization_spaces=False,
|
100 |
)
|
101 |
response = generated_texts[0]
|
102 |
|
requirements.txt
CHANGED
@@ -11,3 +11,6 @@ transformers
|
|
11 |
accelerate>=0.26.0
|
12 |
bitsandbytes
|
13 |
pillow
|
|
|
|
|
|
|
|
11 |
accelerate>=0.26.0
|
12 |
bitsandbytes
|
13 |
pillow
|
14 |
+
flash-attn
|
15 |
+
byaldi
|
16 |
+
pdf2image
|