deepakkarkala commited on
Commit
0e9898e
Β·
1 Parent(s): cfeb389

Logging to UI

Browse files
Files changed (2) hide show
  1. app.py +13 -1
  2. requirements.txt +0 -5
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import io
 
2
  import os
3
  import uuid
4
 
@@ -13,6 +14,11 @@ from transformers.image_utils import load_image
13
 
14
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
15
 
 
 
 
 
 
16
  if "session_id" not in st.session_state:
17
  st.session_state["session_id"] = str(uuid.uuid4()) # Generate unique session ID
18
 
@@ -58,6 +64,8 @@ with st.sidebar:
58
  "[Source Code](https://huggingface.co/spaces/deepakkarkala/multimodal-rag/tree/main)"
59
 
60
  st.title("πŸ“ Image Q&A with VLM")
 
 
61
  uploaded_pdf = st.file_uploader("Upload PDF file", type=("pdf"))
62
  query = st.text_input(
63
  "Ask something about the image",
@@ -77,13 +85,17 @@ if uploaded_pdf and "is_index_complete" not in st.session_state:
77
  model_embedding.index(
78
  input_path=images_folder, index_name=index_name, store_collection_with_index=False, overwrite=True
79
  )
 
80
  st.session_state["is_index_complete"] = True
81
 
82
 
83
 
84
  if uploaded_pdf and query:
85
  docs_retrieved = model_embedding.search(query, k=1)
86
- image_similar_to_query = images[docs_retrieved[0]["doc_id"]]
 
 
 
87
 
88
  # Create input messages
89
  system_prompt = "You are an AI assistant. Your task is reply to user questions based on the provided image context."
 
1
  import io
2
+ import logging
3
  import os
4
  import uuid
5
 
 
14
 
15
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
16
 
17
+ # Capture logs
18
+ log_stream = io.StringIO()
19
+ logging.basicConfig(stream=log_stream, level=logging.INFO)
20
+
21
+
22
  if "session_id" not in st.session_state:
23
  st.session_state["session_id"] = str(uuid.uuid4()) # Generate unique session ID
24
 
 
64
  "[Source Code](https://huggingface.co/spaces/deepakkarkala/multimodal-rag/tree/main)"
65
 
66
  st.title("πŸ“ Image Q&A with VLM")
67
+ st.text_area("Logs:", log_stream.getvalue(), height=200)
68
+
69
  uploaded_pdf = st.file_uploader("Upload PDF file", type=("pdf"))
70
  query = st.text_input(
71
  "Ask something about the image",
 
85
  model_embedding.index(
86
  input_path=images_folder, index_name=index_name, store_collection_with_index=False, overwrite=True
87
  )
88
+ logging.info(f"{len(images)} number of images extracted from PDF and indexed")
89
  st.session_state["is_index_complete"] = True
90
 
91
 
92
 
93
  if uploaded_pdf and query:
94
  docs_retrieved = model_embedding.search(query, k=1)
95
+ logging.info(f"{len(docs_retrieved)} number of images retrieved as relevant to query")
96
+ image_id = docs_retrieved[0]["doc_id"]
97
+ logging.info(f"Image id:{image_id} retrieved" )
98
+ image_similar_to_query = images[image_id]
99
 
100
  # Create input messages
101
  system_prompt = "You are an AI assistant. Your task is reply to user questions based on the provided image context."
requirements.txt CHANGED
@@ -1,11 +1,6 @@
1
  streamlit>=1.28
2
- langchain>=0.0.217
3
- openai>=1.2
4
- duckduckgo-search
5
- anthropic>=0.3.0
6
  trubrics>=1.4.3
7
  streamlit-feedback
8
- langchain-community
9
  torch
10
  transformers
11
  accelerate>=0.26.0
 
1
  streamlit>=1.28
 
 
 
 
2
  trubrics>=1.4.3
3
  streamlit-feedback
 
4
  torch
5
  transformers
6
  accelerate>=0.26.0