EurybiaMini / app.py
ddriscoll's picture
Upload app.py
c728b50 verified
import os
import glob
import time
import threading
import requests
import wikipedia
import torch
import cv2
import numpy as np
from io import BytesIO
from PIL import Image
import base64 # Added import
import gradio as gr
from ultralytics import YOLO
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from diffusers import MarigoldDepthPipeline # Updated import for depth model
from realesrgan import RealESRGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
# Set environment variable for PyTorch MPS fallback before importing torch
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
# Initialize Models
def initialize_models():
models = {}
# Device detection
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
device = 'cpu'
models['device'] = device
print(f"Using device: {device}")
# Initialize the RoBERTa model for question answering
try:
models['qa_pipeline'] = pipeline(
"question-answering", model="deepset/roberta-base-squad2", device=0 if device == 'cuda' else -1)
print("RoBERTa QA pipeline initialized.")
except Exception as e:
print(f"Error initializing the RoBERTa model: {e}")
models['qa_pipeline'] = None
# Initialize the Gemma model
try:
models['gemma_tokenizer'] = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
models['gemma_model'] = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b-it",
device_map="auto",
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32
)
print("Gemma model initialized.")
except Exception as e:
print(f"Error initializing the Gemma model: {e}")
models['gemma_model'] = None
# Initialize the depth estimation model using MarigoldDepthPipeline exactly as per your sample
try:
if device == 'cuda':
models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0",
variant="fp16",
torch_dtype=torch.float16
).to('cuda')
else:
# For CPU or MPS devices, keep on 'cpu' to avoid unsupported operators
models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-depth-lcm-v1-0",
torch_dtype=torch.float32
).to('cpu')
print("Depth estimation model initialized.")
except Exception as e:
error_message = f"Error initializing the depth estimation model: {e}"
print(error_message)
models['depth_pipe'] = None
models['depth_init_error'] = error_message # Store the error message
# Initialize the upscaling model
try:
upscaler_model_path = 'weights/RealESRGAN_x4plus.pth' # Ensure this path is correct
if not os.path.exists(upscaler_model_path):
print(f"Upscaling model weights not found at {upscaler_model_path}. Please download them.")
models['upscaler'] = None
else:
# Define the model architecture
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
num_block=23, num_grow_ch=32, scale=4)
# Initialize RealESRGANer
models['upscaler'] = RealESRGANer(
scale=4,
model_path=upscaler_model_path,
model=model,
pre_pad=0,
half=(device == 'cuda'),
device=device
)
print("Real-ESRGAN upscaler initialized.")
except Exception as e:
print(f"Error initializing the upscaling model: {e}")
models['upscaler'] = None
# Initialize YOLO model
try:
source_weights_path = "/Users/David/Downloads/WheelOfFortuneLab-DavidDriscoll/Eurybia1.3/mbari_315k_yolov8.pt"
if not os.path.exists(source_weights_path):
print(f"YOLO weights not found at {source_weights_path}. Please download them.")
models['yolo_model'] = None
else:
models['yolo_model'] = YOLO(source_weights_path)
print("YOLO model initialized.")
except Exception as e:
print(f"Error initializing YOLO model: {e}")
models['yolo_model'] = None
return models
models = initialize_models()
# Utility Functions
def search_class_description(class_name):
wikipedia.set_lang("en")
wikipedia.set_rate_limiting(True)
description = ""
try:
page = wikipedia.page(class_name)
if page:
description = page.content[:5000] # Get more content
except Exception as e:
print(f"Error fetching description for {class_name}: {e}")
return description
def search_class_image(class_name):
wikipedia.set_lang("en")
wikipedia.set_rate_limiting(True)
img_url = ""
try:
page = wikipedia.page(class_name)
if page:
for img in page.images:
if img.lower().endswith(('.jpg', '.jpeg', '.png', '.gif')):
img_url = img
break
except Exception as e:
print(f"Error fetching image for {class_name}: {e}")
return img_url
def process_image(image):
if models['yolo_model'] is None:
return None, "YOLO model is not initialized.", "YOLO model is not initialized.", [], None
try:
if image is None:
return None, "No image uploaded.", "No image uploaded.", [], None
# Convert Gradio Image to OpenCV format
image_np = np.array(image)
if image_np.dtype != np.uint8:
image_np = image_np.astype(np.uint8)
if len(image_np.shape) != 3 or image_np.shape[2] != 3:
return None, "Invalid image format. Please upload a RGB image.", "Invalid image format. Please upload a RGB image.", [], None
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Store the original image before drawing bounding boxes
original_image_cv = image_cv.copy()
original_image_pil = Image.fromarray(cv2.cvtColor(original_image_cv, cv2.COLOR_BGR2RGB))
# Perform YOLO prediction
results = models['yolo_model'].predict(
source=image_cv, conf=0.075)[0] # Lowered the threshold
bounding_boxes = []
image_processed = image_cv.copy()
if results.boxes is not None:
for box in results.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
class_name = models['yolo_model'].names[int(box.cls)]
confidence = box.conf.item() * 100 # Convert to percentage
bounding_boxes.append({
"coords": (x1, y1, x2, y2),
"class_name": class_name,
"confidence": confidence
})
cv2.rectangle(image_processed, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(image_processed, f'{class_name} {confidence:.2f}%',
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.9, (0, 0, 255), 2)
# Convert back to PIL Image
processed_image = Image.fromarray(cv2.cvtColor(image_processed, cv2.COLOR_BGR2RGB))
# Prepare detection info
if bounding_boxes:
detection_info = "\n".join(
[f'{box["class_name"]}: {box["confidence"]:.2f}%' for box in bounding_boxes]
)
else:
detection_info = "No detections found."
# Prepare detection details as Markdown
if bounding_boxes:
details = ""
for idx, box in enumerate(bounding_boxes):
class_name = box['class_name']
confidence = box['confidence']
description = search_class_description(class_name)
img_url = search_class_image(class_name)
img_md = ""
if img_url:
try:
headers = {
'User-Agent': 'MyApp/1.0 (https://example.com/contact; [email protected])'
}
response = requests.get(img_url, headers=headers, timeout=10)
img_data = response.content
img = Image.open(BytesIO(img_data)).convert("RGB")
img.thumbnail((400, 400)) # Resize for faster loading
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
img_md = f"![{class_name}](data:image/png;base64,{img_str})\n\n"
except Exception as e:
print(f"Error fetching image for {class_name}: {e}")
details += f"### {idx+1}. {class_name} ({confidence:.2f}%)\n\n"
if description:
details += f"{description}\n\n"
if img_md:
details += f"{img_md}\n\n"
detection_details_md = details
else:
detection_details_md = "No detections to show."
return processed_image, detection_info, detection_details_md, bounding_boxes, original_image_pil
except Exception as e:
print(f"Error processing image: {e}")
return None, f"Error processing image: {e}", f"Error processing image: {e}", [], None
def ask_eurybia(question, state):
if not question.strip():
return "Please enter a valid question.", state
if not state['bounding_boxes']:
return "No detected objects to ask about.", state
# Combine descriptions of all detected objects as context
context = ""
for box in state['bounding_boxes']:
description = search_class_description(box['class_name'])
if description:
context += description + "\n"
if not context.strip():
return "No sufficient context available to answer the question.", state
try:
if models['qa_pipeline'] is None:
return "QA pipeline is not initialized.", state
answer = models['qa_pipeline'](question=question, context=context)
answer_text = answer['answer'].strip()
if not answer_text:
return "I couldn't find an answer to that question based on the detected objects.", state
return answer_text, state
except Exception as e:
print(f"Error during question answering: {e}")
return f"Error during question answering: {e}", state
def enhance_image(cropped_image_pil):
if models['upscaler'] is None:
return None, "Upscaling model is not initialized."
try:
input_image = cropped_image_pil.convert("RGB")
img = np.array(input_image)
# Run the model to enhance the image
output, _ = models['upscaler'].enhance(img, outscale=4)
enhanced_image = Image.fromarray(output)
return enhanced_image, "Image enhanced successfully."
except Exception as e:
print(f"Error during image enhancement: {e}")
return None, f"Error during image enhancement: {e}"
def run_depth_prediction(original_image):
if models['depth_pipe'] is None:
error_msg = models.get('depth_init_error', "Depth estimation model is not initialized.")
return None, error_msg
try:
if original_image is None:
return None, "No image uploaded for depth prediction."
# Prepare the image
input_image = original_image.convert("RGB")
# Run the depth pipeline
result = models['depth_pipe'](input_image)
# Access the depth prediction
depth_prediction = result.prediction # Adjust based on sample code
# Visualize the depth map
vis_depth = models['depth_pipe'].image_processor.visualize_depth(depth_prediction)
# Ensure vis_depth is a list and extract the first image
if isinstance(vis_depth, list) and len(vis_depth) > 0:
vis_depth_image = vis_depth[0]
else:
vis_depth_image = vis_depth # Fallback if not a list
return vis_depth_image, "Depth prediction completed."
except Exception as e:
print(f"Error during depth prediction: {e}")
return None, f"Error during depth prediction: {e}"
# Gradio Interface Components
with gr.Blocks() as demo:
gr.Markdown("# Eurybia Mini - Object Detection and Analysis Tool")
with gr.Tab("Upload & Process"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Image")
process_button = gr.Button("Process Image")
clear_button = gr.Button("Clear")
with gr.Column():
processed_image = gr.Image(type="pil", label="Processed Image")
detection_info = gr.Textbox(label="Detection Information", lines=10)
with gr.Tab("Detection Details"):
with gr.Accordion("Click to see detection details", open=False):
detection_details_md = gr.Markdown("No detections to show.")
with gr.Tab("Ask Eurybia"):
with gr.Row():
with gr.Column():
question_input = gr.Textbox(label="Ask a question about the detected objects")
ask_button = gr.Button("Ask Eurybia")
with gr.Column():
answer_output = gr.Markdown(label="Eurybia's Answer")
with gr.Tab("Depth Estimation"):
with gr.Row():
with gr.Column():
depth_button = gr.Button("Run Depth Prediction")
with gr.Column():
depth_output = gr.Image(type="pil", label="Depth Map")
depth_status = gr.Textbox(label="Status", lines=2)
# Display error message if depth estimation model failed to initialize
if models.get('depth_init_error'):
gr.Markdown(f"**Depth Estimation Initialization Error:** {models['depth_init_error']}")
with gr.Tab("Enhance Detected Objects"):
if models['yolo_model'] is not None and models['upscaler'] is not None:
with gr.Row():
detected_objects = gr.Dropdown(choices=[], label="Select Detected Object", interactive=True)
enhance_btn = gr.Button("Enhance Image")
with gr.Column():
enhanced_image = gr.Image(type="pil", label="Enhanced Image")
enhance_status = gr.Textbox(label="Status", lines=2)
else:
gr.Markdown("**Warning:** YOLO model or Upscaling model is not initialized. Image enhancement functionality will be unavailable.")
with gr.Tab("Credits"):
gr.Markdown("""
# Credits and Licensing Information
This project utilizes various open-source libraries, tools, pretrained models, and datasets. Below is the list of components used and their respective credits/licenses:
## Libraries
- **Python** - Python Software Foundation License (PSF License)
- **Gradio** - Licensed under the Apache License 2.0
- **Torch (PyTorch)** - Licensed under the BSD 3-Clause License
- **OpenCV (cv2)** - Licensed under the Apache License 2.0
- **NumPy** - Licensed under the BSD License
- **Pillow (PIL)** - Licensed under the HPND License
- **Requests** - Licensed under the Apache License 2.0
- **Wikipedia API** - Licensed under the MIT License
- **Transformers** - Licensed under the Apache License 2.0
- **Diffusers** - Licensed under the Apache License 2.0
- **Real-ESRGAN** - Licensed under the MIT License
- **BasicSR** - Licensed under the Apache License 2.0
- **Ultralytics YOLO** - Licensed under the GPL-3.0 License
## Pretrained Models
- **deepset/roberta-base-squad2 (RoBERTa)** - Model provided by Hugging Face under the Apache License 2.0.
- **google/gemma-2-2b-it** - Model provided by Hugging Face under the Apache License 2.0.
- **prs-eth/marigold-depth-lcm-v1-0** - Licensed under the Apache License 2.0.
- **Real-ESRGAN model weights (RealESRGAN_x4plus.pth)** - Distributed under the MIT License.
- **FathomNet MBARI 315K YOLOv8 Model**:
- **Dataset**: Sourced from [FathomNet](https://fathomnet.org).
- **Model**: Derived from MBARI’s curated dataset of 315,000 marine annotations.
- **License**: Dataset and models adhere to MBARI’s Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
## Datasets
- **FathomNet MBARI Dataset**:
- A large-scale dataset for marine biodiversity image annotations.
- All content adheres to the [CC BY-NC 4.0 License](https://creativecommons.org/licenses/by-nc/4.0/).
## Acknowledgments
- **Ultralytics YOLO**: For the YOLOv8 architecture used for object detection.
- **FathomNet and MBARI**: For providing the marine dataset and annotations that support object detection in underwater imagery.
- **Gradio**: For providing an intuitive interface for machine learning applications.
- **Hugging Face**: For pretrained models and pipelines (e.g., Transformers, Diffusers).
- **Real-ESRGAN**: For image enhancement and upscaling models.
- **Wikipedia API**: For fetching object descriptions and images.
""")
# Hidden state to store bounding boxes, original and processed images
state = gr.State({"bounding_boxes": [], "last_image": None, "original_image": None})
# Event Handlers
def on_process_image(image, state):
processed_img, info, details, bounding_boxes, original_image_pil = process_image(image)
if processed_img is not None:
# Update the state with new bounding boxes and images
state['bounding_boxes'] = bounding_boxes
state['last_image'] = processed_img
state['original_image'] = original_image_pil
# Update the dropdown choices for detected objects
choices = [f"{idx+1}. {box['class_name']} ({box['confidence']:.2f}%)" for idx, box in enumerate(bounding_boxes)]
else:
choices = []
return processed_img, info, details, gr.update(choices=choices), state
process_button.click(
on_process_image,
inputs=[image_input, state],
outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
)
def on_clear(state):
state = {"bounding_boxes": [], "last_image": None, "original_image": None}
return None, "No detections found.", "No detections to show.", gr.update(choices=[]), state
clear_button.click(
on_clear,
inputs=state,
outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
)
def on_ask_eurybia(question, state):
answer, state = ask_eurybia(question, state)
return answer, state
ask_button.click(
on_ask_eurybia,
inputs=[question_input, state],
outputs=[answer_output, state]
)
def on_depth_prediction(state):
original_image = state.get('original_image')
depth_img, status = run_depth_prediction(original_image)
return depth_img, status
depth_button.click(
on_depth_prediction,
inputs=state,
outputs=[depth_output, depth_status]
)
def on_enhance_image(selected_object, state):
if not selected_object:
return None, "No object selected.", state
try:
idx = int(selected_object.split('.')[0]) - 1
box = state['bounding_boxes'][idx]
class_name = box['class_name']
x1, y1, x2, y2 = box['coords']
if not state.get('last_image'):
return None, "Processed image is not available.", state
# Ensure processed_image is stored in state
processed_img_pil = state['last_image']
if not isinstance(processed_img_pil, Image.Image):
return None, "Processed image is in an unsupported format.", state
# Convert processed_image to OpenCV format with checks
processed_img_cv = np.array(processed_img_pil)
if processed_img_cv.dtype != np.uint8:
processed_img_cv = processed_img_cv.astype(np.uint8)
if len(processed_img_cv.shape) != 3 or processed_img_cv.shape[2] != 3:
return None, "Invalid processed image format.", state
processed_img_cv = cv2.cvtColor(processed_img_cv, cv2.COLOR_RGB2BGR)
# Crop the detected object from the processed image
cropped_img_cv = processed_img_cv[y1:y2, x1:x2]
if cropped_img_cv.size == 0:
return None, "Cropped image is empty.", state
cropped_img_pil = Image.fromarray(cv2.cvtColor(cropped_img_cv, cv2.COLOR_BGR2RGB))
# Enhance the cropped image
enhanced_img, status = enhance_image(cropped_img_pil)
return enhanced_img, status, state
except Exception as e:
return None, f"Error: {e}", state
if models['yolo_model'] is not None and models['upscaler'] is not None:
enhance_btn.click(
on_enhance_image,
inputs=[detected_objects, state],
outputs=[enhanced_image, enhance_status, state]
)
# Optional: Add a note if the depth model isn't initialized
if models['depth_pipe'] is None and not models.get('depth_init_error'):
gr.Markdown("**Warning:** Depth estimation model is not initialized. Depth prediction functionality will be unavailable.")
# Optional: Add a note if the upscaler isn't initialized
if models['upscaler'] is None:
gr.Markdown("**Warning:** Upscaling model is not initialized. Image enhancement functionality will be unavailable.")
# Launch the Gradio app
demo.launch()