File size: 8,135 Bytes
b711cc0
1b3d576
 
b711cc0
 
 
1b3d576
57d5ba8
1b3d576
 
 
 
 
b711cc0
57d5ba8
b711cc0
 
57d5ba8
 
 
 
 
 
 
 
 
 
 
 
 
b711cc0
1b3d576
 
 
b711cc0
57d5ba8
b711cc0
1b3d576
 
 
 
 
b711cc0
 
 
 
1b3d576
 
 
b711cc0
1b3d576
 
b711cc0
1b3d576
 
b711cc0
c53fa22
1b3d576
 
 
b711cc0
 
 
1b3d576
 
 
 
 
 
b711cc0
 
 
1b3d576
 
 
b711cc0
 
 
1b3d576
 
b711cc0
1b3d576
 
b711cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d5ba8
b711cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d5ba8
b711cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d5ba8
b711cc0
 
 
 
 
 
 
 
57d5ba8
 
b711cc0
 
 
57d5ba8
b711cc0
 
 
 
 
 
 
 
 
 
 
1b3d576
b711cc0
 
57d5ba8
b711cc0
57d5ba8
 
 
 
 
 
 
b711cc0
 
 
 
 
 
57d5ba8
b711cc0
57d5ba8
b711cc0
 
 
 
 
57d5ba8
b711cc0
 
57d5ba8
1b3d576
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import sqlite3
import requests
import json
import pyttsx3  # For local TTS (if desired)
import speech_recognition as sr  # For local STT (if desired)

class StarMaintAI:
    def __init__(self, db_path):
        self.connection = sqlite3.connect(db_path)
        self.short_term_memory = []
        self.medium_term_memory = []
        self.long_term_memory = {}

        # ModelsLab API key
        self.modelslab_api_key = os.getenv("MODELSLAB_API_KEY", "")

        # StarMaint-specific system rules and prompts
        self.system_prompt = (
            "You are StarMaint AI, the ultimate assistant for industrial reliability and maintenance. "
            "Your purpose is to assist with predictive maintenance, task automation, voice interactions, and knowledge management. "
            "Be professional, concise, and helpful, adhering to the highest standards of AI performance."
        )

        self.rules = [
            "Always provide accurate and contextually relevant information.",
            "Follow the user’s intent and prioritize clarity in responses.",
            "Ensure all actions align with industrial safety and reliability principles.",
            "Operate efficiently and avoid unnecessary verbosity."
        ]

        self.load_long_term_memory()

    def load_long_term_memory(self):
        """
        Load persistent memory from the 'long_term_memory' table.
        """
        cursor = self.connection.cursor()
        cursor.execute("SELECT key, value FROM long_term_memory")
        self.long_term_memory = {row[0]: row[1] for row in cursor.fetchall()}

    def process_user_input(self, user_input):
        """
        Main pipeline: interpret user input, find relevant info, execute an action, return a response.
        """
        # Step 1: Interpret
        prompt = self.fetch_prompt("Process")
        processed_intent = self.nlp_parse(user_input, prompt)

        # Step 2: Retrieve relevant data from DB
        query_data = self.find_data(processed_intent)

        # Step 3: Execute the desired function
        action_response = self.execute_function(query_data)

        # Step 4: Generate final text response
        final_response = self.generate_response(user_input, action_response)
        return final_response

    def fetch_prompt(self, prompt_name):
        """
        Fetch a stored prompt or instruction from the 'prompts' table.
        """
        cursor = self.connection.cursor()
        cursor.execute("SELECT description FROM prompts WHERE title = ?", (prompt_name,))
        result = cursor.fetchone()
        return result[0] if result else ""

    def nlp_parse(self, text, prompt):
        """
        Basic natural language parsing — can be replaced with advanced NLU.
        """
        return f"Interpreted Command: {text} with prompt context: {prompt}"

    def find_data(self, intent):
        """
        Look up the function to call from a 'functions' table, using the interpreted intent.
        """
        cursor = self.connection.cursor()
        cursor.execute("SELECT * FROM functions WHERE function_name = ?", (intent,))
        return cursor.fetchone()  # Could contain e.g. ('transcribe_audio', ...)

    def execute_function(self, function_data):
        """
        Dynamically route to the desired function based on DB data or user intent.
        """
        if not function_data:
            return "No matching function found in database."

        function_name = function_data[0]

        if function_name == "transcribe_audio":
            audio_url = "https://example.com/test.wav"
            return self.transcribe_audio(audio_url, input_language="en")

        elif function_name == "generate_audio":
            text_prompt = "Hello, this is a sample text for voice synthesis."
            init_audio_url = "https://example.com/voice_clip.wav"
            return self.generate_audio(text_prompt, init_audio_url)

        elif function_name == "uncensored_chat":
            chat_prompt = "Write a tagline for an ice cream shop."
            return self.uncensored_chat_completion(chat_prompt)

        else:
            return f"Function '{function_name}' not recognized or not yet implemented."

    def transcribe_audio(self, audio_url, input_language="en"):
        """
        Integrates ModelsLab Speech-to-Text (Whisper) endpoint.
        """
        if not self.modelslab_api_key:
            return "API key not found; cannot transcribe audio."

        url = "https://modelslab.com/api/v6/whisper/transcribe"
        payload = {
            "key": self.modelslab_api_key,
            "audio_url": audio_url,
            "input_language": input_language,
            "timestamp_level": None,
            "webhook": None,
            "track_id": None
        }

        headers = {"Content-Type": "application/json"}

        try:
            response = requests.post(url, headers=headers, data=json.dumps(payload))
            return f"Transcription request sent. Response: {response.text}"
        except Exception as e:
            return f"Error during transcription: {e}"

    def generate_audio(self, text_prompt, init_audio_url=None, voice_id=None, language="english"):
        """
        Integrates ModelsLab Text-to-Audio (Voice Cloning / TTS).
        """
        if not self.modelslab_api_key:
            return "API key not found; cannot generate audio."

        url = "https://modelslab.com/api/v6/voice/text_to_audio"
        payload = {
            "key": self.modelslab_api_key,
            "prompt": text_prompt,
            "language": language,
            "webhook": None,
            "track_id": None
        }

        if init_audio_url:
            payload["init_audio"] = init_audio_url
        elif voice_id:
            payload["voice_id"] = voice_id

        headers = {"Content-Type": "application/json"}

        try:
            response = requests.post(url, headers=headers, data=json.dumps(payload))
            return f"Audio generation request sent. Response: {response.text}"
        except Exception as e:
            return f"Error during audio generation: {e}"

    def uncensored_chat_completion(self, prompt):
        """
        Integrates ModelsLab Uncensored Chat Completions.
        """
        if not self.modelslab_api_key:
            return "API key not found; cannot complete uncensored chat."

        base_url = "https://modelslab.com/api/uncensored-chat/v1/completions"
        payload = {
            "model": "ModelsLab/Llama-3.1-8b-Uncensored-Dare",
            "prompt": prompt,
            "max_tokens": 50,
            "temperature": 0.7
        }
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.modelslab_api_key}"
        }

        try:
            response = requests.post(base_url, headers=headers, data=json.dumps(payload))
            data = response.json()
            if "choices" in data and len(data["choices"]) > 0:
                return data["choices"][0].get("text", "")
            else:
                return f"Unexpected chat response: {data}"
        except Exception as e:
            return f"Error during uncensored chat completion: {e}"

    def generate_response(self, user_input, action_response):
        """
        Combine user input, system rules, and action response into a final message.
        """
        return (
            f"System Prompt: {self.system_prompt}\n"
            f"Rules: {'; '.join(self.rules)}\n"
            f"User Input: {user_input}\n"
            f"System Action: {action_response}"
        )


def run_app():
    """
    Example main loop to run the app in a console.
    """
    db_path = "central_data.db"  # Adjust for your environment
    starmaint_ai = StarMaintAI(db_path)

    print("Welcome to StarMaint AI.")
    while True:
        user_input = input("You: ")
        if user_input.lower() in ["exit", "quit"]:
            print("Exiting application.")
            break
        response = starmaint_ai.process_user_input(user_input)
        print(f"AI: {response}")


if __name__ == "__main__":
    run_app()