Spaces:
Runtime error
Runtime error
### -------------------------------- ### | |
### libraries ### | |
### -------------------------------- ### | |
import gradio as gr | |
import numpy as np | |
import os | |
from tensorflow.keras.models import load_model | |
from reader import get_article | |
### -------------------------------- ### | |
### model loading ### | |
### -------------------------------- ### | |
model = load_model('model.h5') # single file model from colab | |
## --------------------------------- ### | |
### reading: categories.txt ### | |
### -------------------------------- ### | |
labels = ['please upload categories.txt' for i in range(10)] # placeholder | |
if os.path.isfile("categories.txt"): | |
# open categories.txt in read mode | |
categories = open("categories.txt", "r") | |
labels = categories.readline().split() | |
## --------------------------------- ### | |
### reading: info.txt ### | |
### -------------------------------- ### | |
# borrow file reading functionality from reader.py | |
info = get_article() | |
### -------------------------------- ### | |
### interface creation ### | |
### -------------------------------- ### | |
samples = ['pug.jpeg', 'cheetah.jpeg'] | |
def preprocess(image): | |
image = np.array(image) / 255 | |
image = np.expand_dims(image, axis=0) | |
return image | |
def predict_image(image): | |
pred = model.predict(preprocess(image)) | |
results = {} | |
for row in pred: | |
for idx, item in enumerate(row): | |
results[labels[idx]] = float(item) | |
return results | |
# generate img input and text label output | |
image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here") | |
label = gr.outputs.Label(num_top_classes=len(labels)) | |
# generate and launch interface | |
interface = gr.Interface(fn=predict_image, inputs=image, outputs=label, article=info['article'], css=info['css'], theme='default', title=info['title'], allow_flagging='never', description=info['description'], examples=samples) | |
interface.launch() |