File size: 3,430 Bytes
9d747be
 
 
 
 
 
 
 
31360c8
9d747be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31360c8
9d747be
 
 
 
 
 
 
 
 
 
 
 
 
31360c8
9d747be
 
 
 
 
 
31360c8
9d747be
 
31360c8
9d747be
 
 
 
31360c8
9d747be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
from typing import Optional, Tuple

import gradio as gr
import pickle
from query_data import get_chain
from threading import Lock

with open("econgeoghistvectorstore.pkl", "rb") as f:
    vectorstore = pickle.load(f)


def set_openai_api_key(api_key: str):
    """Set the api key and return chain.
    If no api_key, then None is returned.
    """
    if api_key:
        os.environ["OPENAI_API_KEY"] = api_key
        chain = get_chain(vectorstore)
        os.environ["OPENAI_API_KEY"] = ""
        return chain

class ChatWrapper:

    def __init__(self):
        self.lock = Lock()
    def __call__(
        self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain
    ):
        """Execute the chat functionality."""
        self.lock.acquire()
        try:
            history = history or []
            # If chain is None, that is because no API key was provided.
            if chain is None:
                history.append((inp, "Please paste your OpenAI key to use"))
                return history, history
            # Set OpenAI key
            import openai
            openai.api_key = api_key
            # Run chain and append input.
            output = chain({"question": inp, "chat_history": history})["answer"]
            history.append((inp, output))
        except Exception as e:
            raise e
        finally:
            self.lock.release()
        return history, history

chat = ChatWrapper()

block = gr.Blocks(css=".gradio-container {background-color: lightgray}")

with block:
    with gr.Row():
        gr.Markdown("<h3><center>Chat-Your-H2 Humanities (History, Economics, Geography)</center></h3>")

        openai_api_key_textbox = gr.Textbox(
            placeholder="Paste your OpenAI API key (sk-...)",
            show_label=False,
            lines=1,
            type="password",
        )

    chatbot = gr.Chatbot()

    with gr.Row():
        message = gr.Textbox(
            label="What's your question?",
            placeholder="Ask questions about anything covered in the H2 Humanities (History, Economics, Geography) syllabus",
            lines=1,
        )
        submit = gr.Button(value="Send", variant="secondary").style(full_width=False)

    gr.Examples(
        examples=[
            "Explain the differences between physical and chemical weathering in the humid tropics.",
            "Use the real wealth effect to explain the negative gradient of the AD curve.",
            "Explain the multiplier process.",
            "To what extent were the problems of the crisis decades caused by the actions of the US?"
        ],
        inputs=message,
    )

    gr.HTML("Demo application of a LangChain chain, built on H2 Economics, H2 History and H2 Geography Data. Many thanks to Jean Chua for giving her notes for Econs, and Yu Tang for his input on Geog.")

    gr.HTML(
        "<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
    )

    state = gr.State()
    agent_state = gr.State()

    submit.click(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])
    message.submit(chat, inputs=[openai_api_key_textbox, message, state, agent_state], outputs=[chatbot, state])

    openai_api_key_textbox.change(
        set_openai_api_key,
        inputs=[openai_api_key_textbox],
        outputs=[agent_state],
    )

block.launch(debug=True)