from transformers import AutoTokenizer from langchain_core.prompts import PromptTemplate from typing import List import models tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") raw_prompt = "{question}" history_prompt = """ Given the following conversation provide a helpful answer to the follow up question. Chat History: {chat_history} Follow Up question: {question} helpful answer: """ standalone_prompt = """ Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. Chat History: {chat_history} Follow Up Input: {question} Standalone question: """ rag_prompt = """ Answer the question based only on the following context: {context} Question: {standalone_question} """ def format_prompt(prompt): chat = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": prompt}, ] formatted_prompt = tokenizer.apply_chat_template( chat, tokenize=False, add_generation_prompt=True ) return PromptTemplate.from_template(formatted_prompt) def format_chat_history(messages: List[models.Message]): return '\n'.join([ '{}: {}'.format(message.type, message.message) for message in messages ]) def format_context(docs: List[str]): return '\n\n'.join(docs) raw_prompt_formatted = format_prompt(raw_prompt) raw_prompt = PromptTemplate.from_template(raw_prompt) history_prompt_formatted = format_prompt(history_prompt) standalone_prompt_formatted = format_prompt(standalone_prompt) rag_prompt_formatted = format_prompt(rag_prompt)