import os import torch import torch.nn as nn from torchvision import transforms from PIL import Image from models import * from torchmetrics import ConfusionMatrix import matplotlib.pyplot as plt from configs import * # Load your model (change this according to your model definition) # model2 = EfficientNetB2WithDropout(num_classes=NUM_CLASSES).to(DEVICE) # model2.load_state_dict(torch.load("output/checkpoints/EfficientNetB2WithDropout.pth")) # model1 = SqueezeNet1_0WithSE(num_classes=NUM_CLASSES).to(DEVICE) # model1.load_state_dict(torch.load("output/checkpoints/SqueezeNet1_0WithSE.pth")) # model3 = MobileNetV2WithDropout(num_classes=NUM_CLASSES).to(DEVICE) # model3.load_state_dict(torch.load("output\checkpoints\MobileNetV2WithDropout.pth")) # model1.eval() # model2.eval() # model3.eval() # Load the model model = MODEL.to(DEVICE) # model.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE)) model.load_state_dict( torch.load(f"output/checkpoints/{MODEL.__class__.__name__}.pth", map_location=DEVICE)) model.eval() torch.set_grad_enabled(False) def predict_image(image_path, model=model, transform=preprocess): classes = CLASSES print("---------------------------") print("Image path:", image_path) image = Image.open(image_path).convert("RGB") image = transform(image).unsqueeze(0) image = image.to(DEVICE) output = model(image) # Softmax algorithm probabilities = torch.softmax(output, dim=1)[0] * 100 # Sort the classes by probabilities in descending order sorted_classes = sorted( zip(classes, probabilities), key=lambda x: x[1], reverse=True ) # Report the prediction for each class print("Probabilities for each class:") for class_label, class_prob in sorted_classes: class_prob = class_prob.item().__round__(2) print(f"{class_label}: {class_prob}%") # Get the predicted class predicted_class = sorted_classes[0][0] # Most probable class predicted_label = classes.index(predicted_class) # Report the prediction print("Predicted class:", predicted_label) print("Predicted label:", predicted_class) return sorted_classes