####################################################### # This file stores all the models used in the project.# ####################################################### import torch from torchvision.models import resnet50 from torchvision.models import resnet18 # resnet50 class Bottleneck(torch.nn.Module): expansion = 4 def __init__(self, in_channels, out_channels, i_downsample=None, stride=1): super(Bottleneck, self).__init__() # hmm,ex 1x1 convolution to reduce channels (intermediate channels) self.conv1 = torch.nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) self.batch_norm1 = torch.nn.BatchNorm2d(out_channels) # 3x3 convolution with specified stride self.conv2 = torch.nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=stride, padding=1 ) self.batch_norm2 = torch.nn.BatchNorm2d(out_channels) # and then leh,1x1 expand back self.conv3 = torch.nn.Conv2d( out_channels, out_channels * self.expansion, kernel_size=1, stride=1, padding=0, ) self.batch_norm3 = torch.nn.BatchNorm2d(out_channels * self.expansion) self.i_downsample = i_downsample self.stride = stride self.relu = torch.nn.ReLU() ##forward the input x through the network,haiyaa def forward(self, x): identity = x.clone() x = self.relu(self.batch_norm1(self.conv1(x))) x = self.relu(self.batch_norm2(self.conv2(x))) x = self.conv3(x) x = self.batch_norm3(x) # downsample if needed if self.i_downsample is not None: identity = self.i_downsample(identity) # add identity x += identity x = self.relu(x) return x # we no use this first,but we can just copy this whole class and apply to resnet16 and etc class Block(torch.nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, i_downsample=None, stride=1): super(Block, self).__init__() self.conv1 = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False, ) self.batch_norm1 = torch.nn.BatchNorm2d(out_channels) self.conv2 = torch.nn.Conv2d( out_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False, ) self.batch_norm2 = torch.nn.BatchNorm2d(out_channels) self.i_downsample = i_downsample self.stride = stride self.relu = torch.nn.ReLU() def forward(self, x): identity = x.clone() x = self.relu(self.batch_norm2(self.conv1(x))) x = self.batch_norm2(self.conv2(x)) if self.i_downsample is not None: identity = self.i_downsample(identity) print(x.shape) print(identity.shape) x += identity x = self.relu(x) return x class ResNet(torch.nn.Module): def __init__(self, ResBlock, layer_list, num_classes, num_channels=3): super(ResNet, self).__init__() self.in_channels = 64 # intial conv layaer self.conv1 = torch.nn.Conv2d( num_channels, 64, kernel_size=7, stride=2, padding=3, bias=False ) self.batch_norm1 = torch.nn.BatchNorm2d(64) self.relu = torch.nn.ReLU() self.max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # residual block(layers),each block got three three layer,total 4 blocks self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64) self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2) self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2) self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) self.fc = torch.nn.Linear(512 * ResBlock.expansion, num_classes) def forward(self, x): x = self.relu(self.batch_norm1(self.conv1(x))) x = self.max_pool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.reshape(x.shape[0], -1) x = self.fc(x) return x def _make_layer(self, ResBlock, blocks, planes, stride=1): # plane is the number of output channel ii_downsample = None layers = [] if stride != 1 or self.in_channels != planes * ResBlock.expansion: ii_downsample = torch.nn.Sequential( torch.nn.Conv2d( self.in_channels, planes * ResBlock.expansion, kernel_size=1, stride=stride, ), torch.nn.BatchNorm2d(planes * ResBlock.expansion), ) layers.append( ResBlock( self.in_channels, planes, i_downsample=ii_downsample, stride=stride ) ) self.in_channels = planes * ResBlock.expansion for i in range(blocks - 1): layers.append(ResBlock(self.in_channels, planes)) return torch.nn.Sequential(*layers) ##list here leh is the number of residual block in each layer def ResNet50(num_classes, channels=3): return ResNet(Bottleneck, [3, 4, 6, 3], num_classes, channels) # VGG16 model class VGG16(torch.nn.Module): def __init__(self, num_classes): super().__init__() self.block_1 = torch.nn.Sequential( torch.nn.Conv2d( in_channels=3, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), ) self.block_2 = torch.nn.Sequential( torch.nn.Conv2d( in_channels=64, out_channels=128, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=128, out_channels=128, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), ) self.block_3 = torch.nn.Sequential( torch.nn.Conv2d( in_channels=128, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), ) self.block_4 = torch.nn.Sequential( torch.nn.Conv2d( in_channels=256, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), ) self.block_5 = torch.nn.Sequential( torch.nn.Conv2d( in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.Conv2d( in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=1, ), torch.nn.ReLU(), torch.nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2)), ) height, width = 3, 3 self.classifier = torch.nn.Sequential( torch.nn.Linear(512 * height * width, 4096), torch.nn.ReLU(True), torch.nn.Dropout(p=0.5), torch.nn.Linear(4096, 4096), torch.nn.ReLU(True), torch.nn.Dropout(p=0.5), torch.nn.Linear(4096, num_classes), ) for m in self.modules(): if isinstance(m, torch.torch.nn.Conv2d) or isinstance( m, torch.torch.nn.Linear ): torch.nn.init.kaiming_uniform_( m.weight, mode="fan_in", nonlinearity="relu" ) if m.bias is not None: m.bias.detach().zero_() self.avgpool = torch.nn.AdaptiveAvgPool2d((height, width)) def forward(self, x): x = self.block_1(x) x = self.block_2(x) x = self.block_3(x) x = self.block_4(x) x = self.block_5(x) x = self.avgpool(x) x = x.view(x.size(0), -1) # flatten logits = self.classifier(x) # probas = F.softmax(logits, dim=1) return logits # ResNet18 model