import os import torch import torch.nn as nn import torch.optim as optim from torchvision.transforms import transforms from torch.utils.data import DataLoader, random_split, Dataset from torchvision.datasets import ImageFolder import matplotlib.pyplot as plt from models import * from scipy.ndimage import gaussian_filter1d from torch.utils.tensorboard import SummaryWriter # print to tensorboard from torchvision.utils import make_grid import pandas as pd from handetect.configs import * import data_loader # torch.cuda.empty_cache() # os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:1024" writer = SummaryWriter(log_dir="output/tensorboard") # Data loader train_loader, valid_loader = data_loader.load_data( ORIG_DATA_DIR, AUG_DATA_DIR, preprocess ) # Initialize model, criterion, optimizer, and scheduler MODEL = MODEL.to(DEVICE) criterion = nn.CrossEntropyLoss() # Adam optimizer optimizer = optim.Adam(MODEL.parameters(), lr=LEARNING_RATE) # StepLR scheduler scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=STEP_SIZE, gamma=GAMMA) # Lists to store training and validation loss history TRAIN_LOSS_HIST = [] VAL_LOSS_HIST = [] AVG_TRAIN_LOSS_HIST = [] AVG_VAL_LOSS_HIST = [] TRAIN_ACC_HIST = [] VAL_ACC_HIST = [] # Training loop for epoch in range(NUM_EPOCHS): MODEL.train(True) # Set model to training mode running_loss = 0.0 total_train = 0 correct_train = 0 for i, (inputs, labels) in enumerate(train_loader, 0): inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) optimizer.zero_grad() outputs = MODEL(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if (i + 1) % NUM_PRINT == 0: print( "[Epoch %d, Batch %d] Loss: %.6f" % (epoch + 1, i + 1, running_loss / NUM_PRINT) ) running_loss = 0.0 _, predicted = torch.max(outputs, 1) total_train += labels.size(0) correct_train += (predicted == labels).sum().item() TRAIN_ACC_HIST.append(correct_train / total_train) TRAIN_LOSS_HIST.append(loss.item()) # Calculate the average training loss for the epoch avg_train_loss = running_loss / len(train_loader) writer.add_scalar("Loss/Train", avg_train_loss, epoch) writer.add_scalar("Accuracy/Train", correct_train / total_train, epoch) AVG_TRAIN_LOSS_HIST.append(avg_train_loss) # Print average training loss for the epoch print("[Epoch %d] Average Training Loss: %.6f" % (epoch + 1, avg_train_loss)) # Learning rate scheduling lr_1 = optimizer.param_groups[0]["lr"] print("Learning Rate: {:.15f}".format(lr_1)) scheduler.step() # Validation loop MODEL.eval() # Set model to evaluation mode val_loss = 0.0 correct_val = 0 total_val = 0 with torch.no_grad(): for inputs, labels in valid_loader: inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) outputs = MODEL(inputs) loss = criterion(outputs, labels) val_loss += loss.item() # Calculate accuracy _, predicted = torch.max(outputs, 1) total_val += labels.size(0) correct_val += (predicted == labels).sum().item() VAL_LOSS_HIST.append(loss.item()) # Calculate the average validation loss for the epoch avg_val_loss = val_loss / len(valid_loader) AVG_VAL_LOSS_HIST.append(loss.item()) print("Average Validation Loss: %.6f" % (avg_val_loss)) # Calculate the accuracy of validation set val_accuracy = correct_val / total_val VAL_ACC_HIST.append(val_accuracy) print("Validation Accuracy: %.6f" % (val_accuracy)) writer.add_scalar("Loss/Validation", avg_val_loss, epoch) writer.add_scalar("Accuracy/Validation", val_accuracy, epoch) # Add sample images to TensorBoard sample_images, _ = next(iter(valid_loader)) # Get a batch of sample images sample_images = sample_images.to(DEVICE) grid_image = make_grid( sample_images, nrow=8, normalize=True ) # Create a grid of images writer.add_image("Sample Images", grid_image, global_step=epoch) # End of training loop # Save the model torch.save(MODEL.state_dict(), MODEL_SAVE_PATH) print("Model saved at", MODEL_SAVE_PATH) print("Generating loss plot...") # train_loss_line = gaussian_filter1d(TRAIN_LOSS_HIST, sigma=10) # val_loss_line = gaussian_filter1d(VAL_LOSS_HIST, sigma=10) # plt.plot(range(1, NUM_EPOCHS + 1), train_loss_line, label='Train Loss') # plt.plot(range(1, NUM_EPOCHS + 1), val_loss_line, label='Validation Loss') avg_train_loss_line = gaussian_filter1d(AVG_TRAIN_LOSS_HIST, sigma=2) avg_val_loss_line = gaussian_filter1d(AVG_VAL_LOSS_HIST, sigma=2) train_loss_line = gaussian_filter1d(TRAIN_LOSS_HIST, sigma=2) val_loss_line = gaussian_filter1d(VAL_LOSS_HIST, sigma=2) train_acc_line = gaussian_filter1d(TRAIN_ACC_HIST, sigma=2) val_acc_line = gaussian_filter1d(VAL_ACC_HIST, sigma=2) plt.plot(range(1, NUM_EPOCHS + 1), train_loss_line, label="Train Loss") plt.plot(range(1, NUM_EPOCHS + 1), val_loss_line, label="Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() plt.title("Train Loss and Validation Loss") plt.savefig("loss_plot.png") plt.clf() plt.plot(range(1, NUM_EPOCHS + 1), avg_train_loss_line, label="Average Train Loss") plt.plot(range(1, NUM_EPOCHS + 1), avg_val_loss_line, label="Average Validation Loss") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() plt.title("Average Train Loss and Average Validation Loss") plt.savefig("avg_loss_plot.png") plt.clf() plt.plot(range(1, NUM_EPOCHS + 1), train_acc_line, label="Train Accuracy") plt.plot(range(1, NUM_EPOCHS + 1), val_acc_line, label="Validation Accuracy") plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend() plt.title("Train Accuracy and Validation Accuracy") plt.savefig("accuracy_plot.png") dummy_input = torch.randn(1, 3, 64, 64).to(DEVICE) # Adjust input shape accordingly writer.add_graph(MODEL, dummy_input) # Close TensorBoard writer writer.close()