import os import torch import torch.nn as nn from torchvision import transforms from PIL import Image from models import * from torchmetrics import ConfusionMatrix import matplotlib.pyplot as plt from configs import * # Load your model (change this according to your model definition) MODEL.load_state_dict( torch.load(MODEL_SAVE_PATH, map_location=DEVICE) ) # Load the model on the same device MODEL.eval() MODEL = MODEL.to(DEVICE) MODEL.eval() torch.set_grad_enabled(False) def predict_image(image_path, model=MODEL, transform=preprocess): classes = CLASSES print("---------------------------") print("Image path:", image_path) image = Image.open(image_path).convert("RGB") image = transform(image).unsqueeze(0) image = image.to(DEVICE) output = model(image) # Softmax algorithm probabilities = torch.softmax(output, dim=1)[0] * 100 # Sort the classes by probabilities in descending order sorted_classes = sorted( zip(classes, probabilities), key=lambda x: x[1], reverse=True ) # Report the prediction for each class print("Probabilities for each class:") for class_label, class_prob in sorted_classes: class_prob = class_prob.item().__round__(2) print(f"{class_label}: {class_prob}%") # Get the predicted class predicted_class = sorted_classes[0][0] # Most probable class predicted_label = classes.index(predicted_class) # Report the prediction print("Predicted class:", predicted_label) print("Predicted label:", predicted_class) print("---------------------------") return predicted_label, sorted_classes predict_image("data/test/Task 1/Healthy/01.png")